mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-02-22 09:37:11 +00:00
* adding example of distributed solution * put back old functgion * update formatting * add halo exchange and slice pad * apply formatting * implement distributed optimized cic_paint * Use new cic_paint with halo * Fix seed for distributed normal * Wrap interpolation function to avoid all gather * Return normal order frequencies for single GPU * add example * format * add optimised bench script * times in ms * add lpt2 * update benchmark and add slurm * Visualize only final field * Update scripts/distributed_pm.py Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com> * Adjust pencil type for frequencies * fix painting issue with slabs * Shared operation in fourrier space now take inverted sharding axis for slabs * add assert to make pyright happy * adjust test for hpc-plotter * add PMWD test * bench * format * added github workflow * fix formatting from main * Update for jaxDecomp pure JAX * revert single halo extent change * update for latest jaxDecomp * remove fourrier_space in autoshmap * make normal_field work with single controller * format * make distributed pm work in single controller * merge bench_pm * update to leapfrog * add a strict dependency on jaxdecomp * global mesh no longer needed * kernels.py no longer uses global mesh * quick fix in distributed * pm.py no longer uses global mesh * painting.py no longer uses global mesh * update demo script * quick fix in kernels * quick fix in distributed * update demo * merge hugos LPT2 code * format * Small fix * format * remove duplicate get_ode_fn * update visualizer * update compensate CIC * By default check_rep is false for shard_map * remove experimental distributed code * update PGDCorrection and neural ode to use new fft3d * jaxDecomp pfft3d promotes to complex automatically * remove deprecated stuff * fix painting issue with read_cic * use jnp interp instead of jc interp * delete old slurms * add notebook examples * apply formatting * add distributed zeros * fix code in LPT2 * jit cic_paint * update notebooks * apply formating * get local shape and zeros can be used by users * add a user facing function to create uniform particle grid * use jax interp instead of jax_cosmo * use float64 for enmeshing * Allow applying weights with relative cic paint * Weights can be traced * remove script folder * update example notebooks * delete outdated design file * add readme for tutorials * update readme * fix small error * forgot particles in multi host * clarifying why cic_paint_dx is slower * clarifying the halo size dependence on the box size * ability to choose snapshots number with MultiHost script * Adding animation notebook * Put plotting in package * Add finite difference laplace kernel + powerspec functions from Hugo Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com> * Put plotting utils in package * By default use absoulute painting with * update code * update notebooks * add tests * Upgrade setup.py to pyproject * Format * format tests * update test dependencies * add test workflow * fix deprecated FftType in jaxpm.kernels * Add aboucaud comments * JAX version is 0.4.35 until Diffrax new release * add numpy explicitly as dependency for tests * fix install order for tests * add numpy to be installed * enforce no build isolation for fastpm * pip install jaxpm test without build isolation * bump jaxdecomp version * revert test workflow * remove outdated tests --------- Co-authored-by: EiffL <fr.eiffel@gmail.com> Co-authored-by: Francois Lanusse <EiffL@users.noreply.github.com> Co-authored-by: Wassim KABALAN <wassim@apc.in2p3.fr> Co-authored-by: Hugo Simonfroy <hugo.simonfroy@gmail.com> Former-commit-id: 8c2e823d4669eac712089bf7f85ffb7912e8232d
165 lines
3.9 KiB
Python
165 lines
3.9 KiB
Python
import jax.numpy as jnp
|
|
import numpy as np
|
|
from jax.lax import FftType
|
|
from jax.sharding import PartitionSpec as P
|
|
from jaxdecomp import fftfreq3d, get_output_specs
|
|
|
|
from jaxpm.distributed import autoshmap
|
|
|
|
|
|
def fftk(k_array):
|
|
"""
|
|
Generate Fourier transform wave numbers for a given mesh.
|
|
|
|
Args:
|
|
nc (int): Shape of the mesh grid.
|
|
|
|
Returns:
|
|
list: List of wave number arrays for each dimension in
|
|
the order [kx, ky, kz].
|
|
"""
|
|
kx, ky, kz = fftfreq3d(k_array)
|
|
# to the order of dimensions in the transposed FFT
|
|
return kx, ky, kz
|
|
|
|
|
|
def interpolate_power_spectrum(input, k, pk, sharding=None):
|
|
|
|
pk_fn = lambda x: jnp.interp(x.reshape(-1), k, pk).reshape(x.shape)
|
|
|
|
gpu_mesh = sharding.mesh if sharding is not None else None
|
|
specs = sharding.spec if sharding is not None else P()
|
|
out_specs = P(*get_output_specs(
|
|
FftType.FFT, specs, mesh=gpu_mesh)) if gpu_mesh is not None else P()
|
|
|
|
return autoshmap(pk_fn,
|
|
gpu_mesh=gpu_mesh,
|
|
in_specs=out_specs,
|
|
out_specs=out_specs)(input)
|
|
|
|
|
|
def gradient_kernel(kvec, direction, order=1):
|
|
"""
|
|
Computes the gradient kernel in the requested direction
|
|
Parameters
|
|
-----------
|
|
kvec: list
|
|
List of wave-vectors in Fourier space
|
|
direction: int
|
|
Index of the direction in which to take the gradient
|
|
|
|
Returns
|
|
--------
|
|
wts: array
|
|
Complex kernel values
|
|
"""
|
|
if order == 0:
|
|
wts = 1j * kvec[direction]
|
|
wts = jnp.squeeze(wts)
|
|
wts[len(wts) // 2] = 0
|
|
wts = wts.reshape(kvec[direction].shape)
|
|
return wts
|
|
else:
|
|
w = kvec[direction]
|
|
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
|
|
wts = a * 1j
|
|
return wts
|
|
|
|
|
|
def invlaplace_kernel(kvec, fd=False):
|
|
"""
|
|
Compute the inverse Laplace kernel.
|
|
|
|
cf. [Feng+2016](https://arxiv.org/pdf/1603.00476)
|
|
|
|
Parameters
|
|
-----------
|
|
kvec: list
|
|
List of wave-vectors
|
|
fd: bool
|
|
Finite difference kernel
|
|
|
|
Returns
|
|
--------
|
|
wts: array
|
|
Complex kernel values
|
|
"""
|
|
if fd:
|
|
kk = sum((ki * jnp.sinc(ki / (2 * jnp.pi)))**2 for ki in kvec)
|
|
else:
|
|
kk = sum(ki**2 for ki in kvec)
|
|
kk_nozeros = jnp.where(kk == 0, 1, kk)
|
|
return -jnp.where(kk == 0, 0, 1 / kk_nozeros)
|
|
|
|
|
|
def longrange_kernel(kvec, r_split):
|
|
"""
|
|
Computes a long range kernel
|
|
|
|
Parameters
|
|
-----------
|
|
kvec: list
|
|
List of wave-vectors
|
|
r_split: float
|
|
Splitting radius
|
|
Returns
|
|
--------
|
|
wts: array
|
|
Complex kernel values
|
|
TODO: @modichirag add documentation
|
|
"""
|
|
if r_split != 0:
|
|
kk = sum(ki**2 for ki in kvec)
|
|
return np.exp(-kk * r_split**2)
|
|
else:
|
|
return 1.
|
|
|
|
|
|
def cic_compensation(kvec):
|
|
"""
|
|
Computes cic compensation kernel.
|
|
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
|
|
Itself based on equation 18 (with p=2) of
|
|
[Jing et al 2005](https://arxiv.org/abs/astro-ph/0409240)
|
|
|
|
Parameters:
|
|
-----------
|
|
kvec: list
|
|
List of wave-vectors
|
|
Returns:
|
|
--------
|
|
wts: array
|
|
Complex kernel values
|
|
"""
|
|
kwts = [jnp.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
|
|
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
|
|
return wts
|
|
|
|
|
|
def PGD_kernel(kvec, kl, ks):
|
|
"""
|
|
Computes the PGD kernel
|
|
|
|
Parameters:
|
|
-----------
|
|
kvec: list
|
|
List of wave-vectors
|
|
kl: float
|
|
Initial long range scale parameter
|
|
ks: float
|
|
Initial dhort range scale parameter
|
|
|
|
Returns:
|
|
--------
|
|
v: array
|
|
Complex kernel values
|
|
"""
|
|
kk = sum(ki**2 for ki in kvec)
|
|
kl2 = kl**2
|
|
ks4 = ks**4
|
|
mask = (kk == 0).nonzero()
|
|
kk[mask] = 1
|
|
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
|
|
imask = (~(kk == 0)).astype(int)
|
|
v *= imask
|
|
return v
|