from functools import partial import jax import jax.numpy as jnp import jax_cosmo as jc from jax.sharding import PartitionSpec as P from jaxpm.distributed import (autoshmap, fft3d, get_local_shape, ifft3d, normal_field) from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second, growth_rate, growth_rate_second) from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, laplace_kernel, longrange_kernel) from jaxpm.painting import cic_paint, cic_paint_dx, cic_read, cic_read_dx def pm_forces(positions, mesh_shape=None, delta=None, r_split=0, halo_size=0): """ Computes gravitational forces on particles using a PM scheme """ if mesh_shape is None: assert (delta is not None ), "If mesh_shape is not provided, delta should be provided" mesh_shape = delta.shape kvec = fftk(mesh_shape) if delta is None: delta_k = fft3d(cic_paint_dx(positions, halo_size=halo_size)) else: delta_k = fft3d(delta) # Computes gravitational potential pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split) # Computes gravitational forces forces = jnp.stack([ cic_read_dx(ifft3d(gradient_kernel(kvec, i) * pot_k), halo_size=halo_size) for i in range(3) ], axis=-1) return forces def lpt2_source(mesh_size, initial_conditions): kvec = fftk(mesh_size) # TODO : this has already been done for LPT1, we should reuse it delta_k = fft3d(initial_conditions) source = jnp.zeros_like(delta_k) D1 = [1, 2, 0] D2 = [2, 0, 1] # laplace_kernel should be actually inv laplace_kernel # adding a minus sign here that will be negated when computing forces # because F = -grad(phi) # and phi = -laplace_kernel(delta_k) pot_k = delta_k * laplace_kernel(delta_k) nabla_i_nabla_i = [ ifft3d(gradient_kernel(kvec, i)**2 * pot_k) for i in range(3) ] # for diagonal terms source += nabla_i_nabla_i[D1[0]] * nabla_i_nabla_i[D2[0]] source += nabla_i_nabla_i[D1[1]] * nabla_i_nabla_i[D2[1]] source += nabla_i_nabla_i[D1[2]] * nabla_i_nabla_i[D2[2]] # off diag terms for i in range(3): nabla_i_nabla_j = gradient_kernel(kvec, D1[i]) * gradient_kernel( kvec, D2[i]) phi = ifft3d(nabla_i_nabla_j * pot_k) source -= phi**2 return source def lpt(cosmo, initial_conditions, a, halo_size=0): """ Computes first order LPT displacement """ local_mesh_shape = (*get_local_shape(initial_conditions.shape), 3) displacement = autoshmap( partial(jnp.zeros, shape=(local_mesh_shape), dtype='float32'), in_specs=(), out_specs=P('x', 'y'))() # yapf: disable initial_force = pm_forces(displacement, delta=initial_conditions, halo_size=halo_size) a = jnp.atleast_1d(a) dx = growth_factor(cosmo, a) * initial_force p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force return dx, p, f # @Credit Hugo Simon https://github.com/hsimonfroy/montecosmo def lpt2(cosmo, initial_conditions, dx, p, f, a, halo_size=0): mesh_size = initial_conditions.shape local_mesh_shape = (*get_local_shape(initial_conditions.shape), 3) # TODO # Displacements have been created in the previous step # find a way to reuse them displacement = autoshmap( partial(jnp.zeros, shape=(local_mesh_shape), dtype='float32'), in_specs=(), out_specs=P('x', 'y'))() # yapf: disable lpt2_delta = lpt2_source(mesh_size, initial_conditions) delta2_k = fft3d(lpt2_delta) lpt2_forces = pm_forces(displacement, mesh_size, delta_k=delta2_k, halo_size=halo_size) dx2 = 3 / 7 * growth_factor_second(cosmo, a) * lpt2_forces p2 = a**2 * growth_rate_second(cosmo, a) * jnp.sqrt( jc.background.Esqr(cosmo, a)) * dx2 f2 = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGf2a(cosmo, a) * lpt2_forces dx += dx2 p += p2 f += f2 return dx, p, f def linear_field(mesh_shape, box_size, pk, seed): """ Generate initial conditions. """ kvec = fftk(mesh_shape) kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5 pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / ( box_size[0] * box_size[1] * box_size[2]) # Initialize a random field with one slice on each gpu field = normal_field(mesh_shape, seed=seed) field = fft3d(field) * pkmesh**0.5 field = ifft3d(field) return field def make_ode_fn(mesh_shape, halo_size=0): def nbody_ode(state, a, cosmo): """ state is a tuple (position, velocities) """ pos, vel = state forces = pm_forces(pos, mesh_shape=mesh_shape, halo_size=halo_size) * 1.5 * cosmo.Omega_m # Computes the update of position (drift) dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel # Computes the update of velocity (kick) dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces return dpos, dvel return nbody_ode def pgd_correction(pos, params): """ improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671 args: pos: particle positions [npart, 3] params: [alpha, kl, ks] pgd parameters """ kvec = fftk(mesh_shape) delta = cic_paint(jnp.zeros(mesh_shape), pos) alpha, kl, ks = params delta_k = jnp.fft.rfftn(delta) PGD_range = PGD_kernel(kvec, kl, ks) pot_k_pgd = (delta_k * laplace_kernel(kvec)) * PGD_range forces_pgd = jnp.stack([ cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k_pgd), pos) for i in range(3) ], axis=-1) dpos_pgd = forces_pgd * alpha return dpos_pgd