from functools import partial import jax import jax.numpy as jnp import jax_cosmo as jc from jax.sharding import PartitionSpec as P from jaxpm.distributed import (autoshmap, fft3d, get_local_shape, ifft3d, normal_field) from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second, growth_rate, growth_rate_second) from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, invlaplace_kernel, longrange_kernel) from jaxpm.painting import cic_paint, cic_paint_dx, cic_read, cic_read_dx def pm_forces(positions, mesh_shape=None, delta=None, r_split=0, halo_size=0, sharding=None): """ Computes gravitational forces on particles using a PM scheme """ if mesh_shape is None: assert (delta is not None),\ "If mesh_shape is not provided, delta should be provided" mesh_shape = delta.shape if delta is None: field = cic_paint_dx(positions, halo_size=halo_size, sharding=sharding) delta_k = fft3d(field) elif jnp.isrealobj(delta): delta_k = fft3d(delta) else: delta_k = delta kvec = fftk(delta_k) # Computes gravitational potential pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel( kvec, r_split=r_split) # Computes gravitational forces forces = jnp.stack([ cic_read_dx(ifft3d(-gradient_kernel(kvec, i) * pot_k), halo_size=halo_size, sharding=sharding) for i in range(3) ], axis=-1) return forces def lpt(cosmo, initial_conditions, a, halo_size=0, sharding=None, order=1): """ Computes first and second order LPT displacement and momentum, e.g. Eq. 2 and 3 [Jenkins2010](https://arxiv.org/pdf/0910.0258) """ gpu_mesh = sharding.mesh if sharding is not None else None spec = sharding.spec if sharding is not None else P() local_mesh_shape = (*get_local_shape(initial_conditions.shape, sharding), 3) displacement = autoshmap( partial(jnp.zeros, shape=(local_mesh_shape), dtype='float32'), gpu_mesh=gpu_mesh, in_specs=(), out_specs=spec)() # yapf: disable a = jnp.atleast_1d(a) E = jnp.sqrt(jc.background.Esqr(cosmo, a)) delta_k = fft3d(initial_conditions) initial_force = pm_forces(displacement, delta=delta_k, halo_size=halo_size, sharding=sharding) dx = growth_factor(cosmo, a) * initial_force p = a**2 * growth_rate(cosmo, a) * E * dx f = a**2 * E * dGfa(cosmo, a) * initial_force if order == 2: kvec = fftk(delta_k) pot_k = delta_k * invlaplace_kernel(kvec) delta2 = 0 shear_acc = 0 # for i, ki in enumerate(kvec): for i in range(3): # Add products of diagonal terms = 0 + s11*s00 + s22*(s11+s00)... # shear_ii = jnp.fft.irfftn(- ki**2 * pot_k) nabla_i_nabla_i = gradient_kernel(kvec, i)**2 shear_ii = jnp.fft.irfftn(nabla_i_nabla_i * pot_k) delta2 += shear_ii * shear_acc shear_acc += shear_ii # for kj in kvec[i+1:]: for j in range(i + 1, 3): # Substract squared strict-up-triangle terms # delta2 -= jnp.fft.irfftn(- ki * kj * pot_k)**2 nabla_i_nabla_j = gradient_kernel(kvec, i) * gradient_kernel( kvec, j) delta2 -= jnp.fft.irfftn(nabla_i_nabla_j * pot_k)**2 delta_k2 = fft3d(delta2) init_force2 = pm_forces(displacement, delta=delta_k2, halo_size=halo_size, sharding=sharding) # NOTE: growth_factor_second is renormalized: - D2 = 3/7 * growth_factor_second dx2 = 3 / 7 * growth_factor_second(cosmo, a) * init_force2 p2 = a**2 * growth_rate_second(cosmo, a) * E * dx2 f2 = a**2 * E * dGf2a(cosmo, a) * init_force2 dx += dx2 p += p2 f += f2 return dx, p, f def linear_field(mesh_shape, box_size, pk, seed, sharding=None): """ Generate initial conditions. """ # Initialize a random field with one slice on each gpu field = normal_field(mesh_shape, seed=seed, sharding=sharding) field = fft3d(field) kvec = fftk(field) kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5 pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / ( box_size[0] * box_size[1] * box_size[2]) field = field * (pkmesh)**0.5 field = ifft3d(field) return field def make_ode_fn(mesh_shape, halo_size=0, sharding=None): def nbody_ode(state, a, cosmo): """ state is a tuple (position, velocities) """ pos, vel = state forces = pm_forces( pos, mesh_shape=mesh_shape, halo_size=halo_size, sharding=sharding) * 1.5 * cosmo.Omega_m # Computes the update of position (drift) dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel # Computes the update of velocity (kick) dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces return dpos, dvel return nbody_ode def get_ode_fn(cosmo, mesh_shape): def nbody_ode(a, state, args): """ State is an array [position, velocities] Compatible with [Diffrax API](https://docs.kidger.site/diffrax/) """ pos, vel = state forces = pm_forces(pos, mesh_shape) * 1.5 * cosmo.Omega_m # Computes the update of position (drift) dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel # Computes the update of velocity (kick) dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces return jnp.stack([dpos, dvel]) return nbody_ode def get_ode_fn(cosmo, mesh_shape, halo_size=0, sharding=None): def nbody_ode(a, state, args): """ State is an array [position, velocities] Compatible with [Diffrax API](https://docs.kidger.site/diffrax/) """ pos, vel = state forces = pm_forces( pos, mesh_shape, halo_size=halo_size, sharding=sharding) * 1.5 * cosmo.Omega_m # Computes the update of position (drift) dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel # Computes the update of velocity (kick) dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces return jnp.stack([dpos, dvel]) return nbody_ode def pgd_correction(pos, mesh_shape, params): """ improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671 args: pos: particle positions [npart, 3] params: [alpha, kl, ks] pgd parameters """ kvec = fftk(mesh_shape) delta = cic_paint(jnp.zeros(mesh_shape), pos) alpha, kl, ks = params delta_k = jnp.fft.rfftn(delta) PGD_range = PGD_kernel(kvec, kl, ks) pot_k_pgd = (delta_k * invlaplace_kernel(kvec)) * PGD_range forces_pgd = jnp.stack([ cic_read(jnp.fft.irfftn(-gradient_kernel(kvec, i) * pot_k_pgd), pos) for i in range(3) ], axis=-1) dpos_pgd = forces_pgd * alpha return dpos_pgd def make_neural_ode_fn(model, mesh_shape): def neural_nbody_ode(state, a, cosmo: Cosmology, params): """ state is a tuple (position, velocities) """ pos, vel = state kvec = fftk(mesh_shape) delta = cic_paint(jnp.zeros(mesh_shape), pos) delta_k = jnp.fft.rfftn(delta) # Computes gravitational potential pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel(kvec, r_split=0) # Apply a correction filter kk = jnp.sqrt(sum((ki / jnp.pi)**2 for ki in kvec)) pot_k = pot_k * (1. + model.apply(params, kk, jnp.atleast_1d(a))) # Computes gravitational forces forces = jnp.stack([ cic_read(jnp.fft.irfftn(-gradient_kernel(kvec, i) * pot_k), pos) for i in range(3) ], axis=-1) forces = forces * 1.5 * cosmo.Omega_m # Computes the update of position (drift) dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel # Computes the update of velocity (kick) dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces return dpos, dvel return neural_nbody_ode