import jax import jax.numpy as jnp from jax.lax import scan def _chunk_split(ptcl_num, chunk_size, *arrays): """Split and reshape particle arrays into chunks and remainders, with the remainders preceding the chunks. 0D ones are duplicated as full arrays in the chunks.""" chunk_size = ptcl_num if chunk_size is None else min(chunk_size, ptcl_num) remainder_size = ptcl_num % chunk_size chunk_num = ptcl_num // chunk_size remainder = None chunks = arrays if remainder_size: remainder = [x[:remainder_size] if x.ndim != 0 else x for x in arrays] chunks = [x[remainder_size:] if x.ndim != 0 else x for x in arrays] # `scan` triggers errors in scatter and gather without the `full` chunks = [ x.reshape(chunk_num, chunk_size, *x.shape[1:]) if x.ndim != 0 else jnp.full(chunk_num, x) for x in chunks ] return remainder, chunks def enmesh(i1, d1, a1, s1, b12, a2, s2): """Multilinear enmeshing.""" i1 = jnp.asarray(i1) d1 = jnp.asarray(d1) with jax.experimental.enable_x64(): a1 = jnp.float64(a1) if a2 is not None else jnp.array(a1, dtype=d1.dtype) if s1 is not None: s1 = jnp.array(s1, dtype=i1.dtype) b12 = jnp.float64(b12) if a2 is not None: a2 = jnp.float64(a2) if s2 is not None: s2 = jnp.array(s2, dtype=i1.dtype) dim = i1.shape[1] neighbors = (jnp.arange(2**dim, dtype=i1.dtype)[:, jnp.newaxis] >> jnp.arange(dim, dtype=i1.dtype)) & 1 if a2 is not None: P = i1 * a1 + d1 - b12 P = P[:, jnp.newaxis] # insert neighbor axis i2 = P + neighbors * a2 # multilinear if s1 is not None: L = s1 * a1 i2 %= L i2 //= a2 d2 = P - i2 * a2 if s1 is not None: d2 -= jnp.rint(d2 / L) * L # also abs(d2) < a2 is expected i2 = i2.astype(i1.dtype) d2 = d2.astype(d1.dtype) a2 = a2.astype(d1.dtype) d2 /= a2 else: i12, d12 = jnp.divmod(b12, a1) i1 -= i12.astype(i1.dtype) d1 -= d12.astype(d1.dtype) # insert neighbor axis i1 = i1[:, jnp.newaxis] d1 = d1[:, jnp.newaxis] # multilinear d1 /= a1 i2 = jnp.floor(d1).astype(i1.dtype) i2 += neighbors d2 = d1 - i2 i2 += i1 if s1 is not None: i2 %= s1 f2 = 1 - jnp.abs(d2) if s1 is None and s2 is not None: # all i2 >= 0 if s1 is not None i2 = jnp.where(i2 < 0, s2, i2) f2 = f2.prod(axis=-1) return i2, f2 def _scatter_chunk(carry, chunk): mesh, offset, cell_size, mesh_shape = carry pmid, disp, val = chunk spatial_ndim = pmid.shape[1] spatial_shape = mesh.shape # multilinear mesh indices and fractions ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size, spatial_shape) # scatter ind = tuple(ind[..., i] for i in range(spatial_ndim)) mesh = mesh.at[ind].add(jnp.multiply(jnp.expand_dims(val, axis=-1), frac)) carry = mesh, offset, cell_size, mesh_shape return carry, None def scatter(pmid, disp, mesh, chunk_size=2**24, val=1., offset=0, cell_size=1.): ptcl_num, spatial_ndim = pmid.shape val = jnp.asarray(val) mesh = jnp.asarray(mesh) remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val) carry = mesh, offset, cell_size, mesh.shape if remainder is not None: carry = _scatter_chunk(carry, remainder)[0] carry = scan(_scatter_chunk, carry, chunks)[0] mesh = carry[0] return mesh def _chunk_cat(remainder_array, chunked_array): """Reshape and concatenate one remainder and one chunked particle arrays.""" array = chunked_array.reshape(-1, *chunked_array.shape[2:]) if remainder_array is not None: array = jnp.concatenate((remainder_array, array), axis=0) return array def gather(pmid, disp, mesh, chunk_size=2**24, val=1, offset=0, cell_size=1.): ptcl_num, spatial_ndim = pmid.shape mesh = jnp.asarray(mesh) val = jnp.asarray(val) if mesh.shape[spatial_ndim:] != val.shape[1:]: raise ValueError('channel shape mismatch: ' f'{mesh.shape[spatial_ndim:]} != {val.shape[1:]}') remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val) carry = mesh, offset, cell_size, mesh.shape val_0 = None if remainder is not None: val_0 = _gather_chunk(carry, remainder)[1] val = scan(_gather_chunk, carry, chunks)[1] val = _chunk_cat(val_0, val) return val def _gather_chunk(carry, chunk): mesh, offset, cell_size, mesh_shape = carry pmid, disp, val = chunk spatial_ndim = pmid.shape[1] spatial_shape = mesh.shape[:spatial_ndim] chan_ndim = mesh.ndim - spatial_ndim chan_axis = tuple(range(-chan_ndim, 0)) # multilinear mesh indices and fractions ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size, spatial_shape) # gather ind = tuple(ind[..., i] for i in range(spatial_ndim)) frac = jnp.expand_dims(frac, chan_axis) val += (mesh.at[ind].get(mode='drop', fill_value=0) * frac).sum(axis=1) return carry, val