import jax import jax.numpy as jnp import jax_cosmo as jc from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel, PGD_kernel from jaxpm.painting import cic_paint, cic_read from jaxpm.growth import growth_factor, growth_rate, dGfa def pm_forces(positions, mesh_shape=None, delta=None, r_split=0): """ Computes gravitational forces on particles using a PM scheme """ if mesh_shape is None: mesh_shape = delta.shape kvec = fftk(mesh_shape) if delta is None: delta_k = jnp.fft.rfftn(cic_paint(jnp.zeros(mesh_shape), positions)) else: delta_k = jnp.fft.rfftn(delta) # Computes gravitational potential pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split) # Computes gravitational forces return jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), positions) for i in range(3)],axis=-1) def lpt(cosmo, initial_conditions, positions, a): """ Computes first order LPT displacement """ initial_force = pm_forces(positions, delta=initial_conditions) a = jnp.atleast_1d(a) dx = growth_factor(cosmo, a) * initial_force p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force return dx, p, f def linear_field(mesh_shape, box_size, pk, seed): """ Generate initial conditions. """ kvec = fftk(mesh_shape) kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5 pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2]) field = jax.random.normal(seed, mesh_shape) field = jnp.fft.rfftn(field) * pkmesh**0.5 field = jnp.fft.irfftn(field) return field def box_muller_field(amplitude, phase, pkmesh): """ Obtain Gaussian random field given uniform random numbers and Pk amplitude. """ field = pkmesh**0.5 * jnp.sqrt(-jnp.log(amplitude)) * (jnp.cos(phase) + 1j * jnp.sin(phase)) return jnp.fft.irfftn(field, (amplitude.shape[0],)*3, norm='ortho') def linear_field_box_muller(mesh_shape, box_size, pk, seed, fixamp = False, inv_phase = False): """ Generate initial conditions with fixed amplitude and/or inverted phase. """ key, subkey1, subkey2 = jax.random.split(seed, 3) kvec = fftk(mesh_shape) kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5 pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2]) if fixamp: amplitude = jnp.ones_like(kmesh) else: amplitude = jax.random.uniform(subkey1, kmesh.shape, minval=1e-8) if inv_phase: phase = jax.random.uniform(subkey2, kmesh.shape, minval=1e-8) * 2 * jnp.pi ret = [] ret.append(box_muller_field(amplitude, phase, pkmesh)) phase = (phase + jnp.pi) ret.append(box_muller_field(amplitude, phase, pkmesh)) return ret return box_muller_field(amplitude, phase, pkmesh) def make_ode_fn(mesh_shape): def nbody_ode(state, a, cosmo): """ state is a tuple (position, velocities) """ pos, vel = state forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m # Computes the update of position (drift) dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel # Computes the update of velocity (kick) dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces return dpos, dvel return nbody_ode def pgd_correction(pos, params): """ improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671 args: pos: particle positions [npart, 3] params: [alpha, kl, ks] pgd parameters """ kvec = fftk(mesh_shape) delta = cic_paint(jnp.zeros(mesh_shape), pos) alpha, kl, ks = params delta_k = jnp.fft.rfftn(delta) PGD_range=PGD_kernel(kvec, kl, ks) pot_k_pgd=(delta_k * laplace_kernel(kvec))*PGD_range forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k_pgd), pos) for i in range(3)],axis=-1) dpos_pgd = forces_pgd*alpha return dpos_pgd