#!/bin/bash ############################################################################################################################## # USAGE:sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 benchmarks/particle_mesh_a100.slurm ############################################################################################################################## #SBATCH --job-name=Particle-Mesh # nom du job #SBATCH --cpus-per-task=8 # nombre de CPU par tache pour gpu_p5 (1/8 du noeud 8-GPU) #SBATCH --hint=nomultithread # hyperthreading desactive #SBATCH --time=04:00:00 # temps d'execution maximum demande (HH:MM:SS) #SBATCH --output=%x_%N_a100.out # nom du fichier de sortie #SBATCH --error=%x_%N_a100.out # nom du fichier d'erreur (ici commun avec la sortie) #SBATCH --exclusive # ressources dediees ##SBATCH --qos=qos_gpu-dev # Nettoyage des modules charges en interactif et herites par defaut num_nodes=$SLURM_JOB_NUM_NODES num_gpu_per_node=$SLURM_NTASKS_PER_NODE OUTPUT_FOLDER_ARGS=1 # Calculate the number of GPUs nb_gpus=$(( num_nodes * num_gpu_per_node)) module purge echo "Job partition: $SLURM_JOB_PARTITION" # Decommenter la commande module suivante si vous utilisez la partition "gpu_p5" # pour avoir acces aux modules compatibles avec cette partition if [[ "$SLURM_JOB_PARTITION" == "gpu_p5" ]]; then module load cpuarch/amd source /gpfsdswork/projects/rech/tkc/commun/venv/a100/bin/activate gpu_name=a100 else source /gpfsdswork/projects/rech/tkc/commun/venv/v100/bin/activate gpu_name=v100 fi # Chargement des modules module load nvidia-compilers/23.9 cuda/12.2.0 cudnn/8.9.7.29-cuda openmpi/4.1.5-cuda nccl/2.18.5-1-cuda cmake module load nvidia-nsight-systems/2024.1.1.59 echo "The number of nodes allocated for this job is: $num_nodes" echo "The number of GPUs allocated for this job is: $nb_gpus" export EQX_ON_ERROR=nan export ENABLE_PERFO_STEP=NVTX export MPI4JAX_USE_CUDA_MPI=1 function profile_python() { if [ $# -lt 1 ]; then echo "Usage: profile_python [arguments for the script]" return 1 fi local script_name=$(basename "$1" .py) local output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name" local report_dir="out_prof/$gpu_name/$nb_gpus/$script_name" if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then local args=$(echo "${@:2}" | tr ' ' '_') # Remove characters '/' and '-' from folder name args=$(echo "$args" | tr -d '/-') output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name/$args" report_dir="out_prof/$gpu_name/$nb_gpus/$script_name/$args" fi mkdir -p "$output_dir" mkdir -p "$report_dir" srun timeout 10m nsys profile -t cuda,nvtx,osrt,mpi -o "$report_dir/report_rank%q{SLURM_PROCID}" python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true } function run_python() { if [ $# -lt 1 ]; then echo "Usage: run_python [arguments for the script]" return 1 fi local script_name=$(basename "$1" .py) local output_dir="traces/$gpu_name/$nb_gpus/$script_name" if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then local args=$(echo "${@:2}" | tr ' ' '_') # Remove characters '/' and '-' from folder name args=$(echo "$args" | tr -d '/-') output_dir="traces/$gpu_name/$nb_gpus/$script_name/$args" fi mkdir -p "$output_dir" srun timeout 10m python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true } # run or profile function slaunch() { run_python "$@" } function plaunch() { profile_python "$@" } # Echo des commandes lancees set -x # Pour ne pas utiliser le /tmp export TMPDIR=$JOBSCRATCH # Pour contourner un bogue dans les versions actuelles de Nsight Systems # il est également nécessaire de créer un lien symbolique permettant de # faire pointer le répertoire /tmp/nvidia vers TMPDIR ln -s $JOBSCRATCH /tmp/nvidia # mpch=(128 256 512 1024 2048 4096) grid=(256 512 1024 2048 4096 8192) precisions=(float32 float64) solvers=(lpt lfm) # GPU name is a100 if num_gpu_per_node is 8, otherwise it is v100 if [ $num_gpu_per_node -eq 8 ]; then gpu_name="a100" else gpu_name="v100" fi out_dir="pm_prof/$gpu_name/$nb_gpus" trace_dir="traces/$gpu_name/$nb_gpus/bench_pmwd" echo "Output dir is : $out_dir" echo "Trace dir is : $trace_dir" for pr in "${precisions[@]}"; do for g in "${grid[@]}"; do for solver in "${solvers[@]}"; do slaunch bench_pmwd.py -m $g -b $g -pr $pr -s $solver -i 4 -o $out_dir -f done # delete crash core dump files rm -f core.python.* done done # # zip the output files and traces # tar -czvf $out_dir.tar.gz $out_dir # tar -czvf $trace_dir.tar.gz $trace_dir # # remove the output files and traces # rm -rf $out_dir $trace_dir #