import jax from jax.experimental.maps import xmap import numpy as np import jax.numpy as jnp from functools import partial import jaxdecomp def fftk(shape, symmetric=False, dtype=np.float32, sharding_info=None): """ Return k_vector given a shape (nc, nc, nc) """ k = [] if sharding_info is not None: nx = sharding_info.pdims[1] ny = sharding_info.pdims[0] # nx = sharding_info[0].Get_size() # ix = sharding_info[0].Get_rank() # ny = sharding_info[1].Get_size() # iy = sharding_info[1].Get_rank() ix = sharding_info.rank iy = 0 shape = sharding_info.global_shape for d in range(len(shape)): kd = np.fft.fftfreq(shape[d]) kd *= 2 * np.pi if symmetric and d == len(shape) - 1: kd = kd[:shape[d] // 2 + 1] if (sharding_info is not None) and d == 0: kd = kd.reshape([nx, -1])[ix] if (sharding_info is not None) and d == 1: kd = kd.reshape([ny, -1])[iy] k.append(kd.astype(dtype)) return k @partial(xmap, in_axes=[['x', 'y', ...], [['x'], ['y'], [...]]], out_axes=['x', 'y', ...]) def apply_gradient_laplace(kfield, kvec): kx, ky, kz = kvec kk = (kx**2 + ky**2 + kz**2) kernel = jnp.where(kk == 0, 1., 1./kk) return jnp.stack([kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(kz) - jnp.sin(2 * kz)), kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(kx) - jnp.sin(2 * kx)), kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(ky) - jnp.sin(2 * ky))], axis=-1) def cic_compensation(kvec): """ Computes cic compensation kernel. Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499 Itself based on equation 18 (with p=2) of `Jing et al 2005 `_ Args: kvec: array of k values in Fourier space Returns: v: array of kernel """ kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)] wts = (kwts[0] * kwts[1] * kwts[2])**(-2) return wts def PGD_kernel(kvec, kl, ks): """ Computes the PGD kernel Parameters: ----------- kvec: array Array of k values in Fourier space kl: float initial long range scale parameter ks: float initial dhort range scale parameter Returns: -------- v: array kernel """ kk = sum(ki**2 for ki in kvec) kl2 = kl**2 ks4 = ks**4 mask = (kk == 0).nonzero() kk[mask] = 1 v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4) imask = (~(kk == 0)).astype(int) v *= imask return v