from functools import partial import jax.numpy as jnp import numpy as np from jax.sharding import PartitionSpec as P from jaxpm.distributed import autoshmap def fftk(shape, dtype=np.float32): """ Generate Fourier transform wave numbers for a given mesh. Args: nc (int): Shape of the mesh grid. Returns: list: List of wave number arrays for each dimension in the order [kx, ky, kz]. """ kx, ky, kz = [jnp.fft.fftfreq(s, dtype=dtype) * 2 * np.pi for s in shape] @partial(autoshmap, in_specs=(P('x'), P('y'), P(None)), out_specs=(P('x'), P(None, 'y'), P(None))) def get_kvec(ky, kz, kx): return (ky.reshape([-1, 1, 1]), kz.reshape([1, -1, 1]), kx.reshape([1, 1, -1])) # yapf: disable ky, kz, kx = get_kvec(ky, kz, kx) # The order corresponds # to the order of dimensions in the transposed FFT return kx, ky, kz def gradient_kernel(kvec, direction, order=1): """ Computes the gradient kernel in the requested direction Parameters: ----------- kvec: array Array of k values in Fourier space direction: int Index of the direction in which to take the gradient Returns: -------- wts: array Complex kernel """ if order == 0: wts = 1j * kvec[direction] wts = jnp.squeeze(wts) wts[len(wts) // 2] = 0 wts = wts.reshape(kvec[direction].shape) return wts else: w = kvec[direction] a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w)) wts = a * 1j return wts def laplace_kernel(kvec): """ Compute the Laplace kernel from a given K vector Parameters: ----------- kvec: array Array of k values in Fourier space Returns: -------- wts: array Complex kernel """ kk = sum(ki**2 for ki in kvec) wts = jnp.where(kk == 0, 1., 1. / kk) return wts def longrange_kernel(kvec, r_split): """ Computes a long range kernel Parameters: ----------- kvec: array Array of k values in Fourier space r_split: float TODO: @modichirag add documentation Returns: -------- wts: array kernel """ if r_split != 0: kk = sum(ki**2 for ki in kvec) return np.exp(-kk * r_split**2) else: return 1. def cic_compensation(kvec): """ Computes cic compensation kernel. Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499 Itself based on equation 18 (with p=2) of `Jing et al 2005 `_ Args: kvec: array of k values in Fourier space Returns: v: array of kernel """ kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)] wts = (kwts[0] * kwts[1] * kwts[2])**(-2) return wts def PGD_kernel(kvec, kl, ks): """ Computes the PGD kernel Parameters: ----------- kvec: array Array of k values in Fourier space kl: float initial long range scale parameter ks: float initial dhort range scale parameter Returns: -------- v: array kernel """ kk = sum(ki**2 for ki in kvec) kl2 = kl**2 ks4 = ks**4 mask = (kk == 0).nonzero() kk[mask] = 1 v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4) imask = (~(kk == 0)).astype(int) v *= imask return v