import numpy as np import jax.numpy as jnp def fftk(shape, symmetric=True, finite=False, dtype=np.float32): """ Return k_vector given a shape (nc, nc, nc) and box_size """ k = [] for d in range(len(shape)): kd = np.fft.fftfreq(shape[d]) kd *= 2 * np.pi kdshape = np.ones(len(shape), dtype='int') if symmetric and d == len(shape) - 1: kd = kd[:shape[d] // 2 + 1] kdshape[d] = len(kd) kd = kd.reshape(kdshape) k.append(kd.astype(dtype)) del kd, kdshape return k def gradient_kernel(kvec, direction, order=1): """ Computes the gradient kernel in the requested direction Parameters: ----------- kvec: array Array of k values in Fourier space direction: int Index of the direction in which to take the gradient Returns: -------- wts: array Complex kernel """ if order == 0: wts = 1j * kvec[direction] wts = jnp.squeeze(wts) wts[len(wts) // 2] = 0 wts = wts.reshape(kvec[direction].shape) return wts else: w = kvec[direction] a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w)) wts = a * 1j return wts def laplace_kernel(kvec): """ Compute the Laplace kernel from a given K vector Parameters: ----------- kvec: array Array of k values in Fourier space Returns: -------- wts: array Complex kernel """ kk = sum(ki**2 for ki in kvec) mask = (kk == 0).nonzero() kk[mask] = 1 wts = 1. / kk imask = (~(kk == 0)).astype(int) wts *= imask return wts def longrange_kernel(kvec, r_split): """ Computes a long range kernel Parameters: ----------- kvec: array Array of k values in Fourier space r_split: float TODO: @modichirag add documentation Returns: -------- wts: array kernel """ if r_split != 0: kk = sum(ki**2 for ki in kvec) return np.exp(-kk * r_split**2) else: return 1.