import jax import jax.numpy as jnp import jax_cosmo as jc from jaxpm.ops import fft3d, ifft3d, zeros from jaxpm.kernels import fftk, apply_gradient_laplace from jaxpm.painting import cic_paint, cic_read from jaxpm.growth import growth_factor, growth_rate, dGfa def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, token=None, comms=None): """ Computes gravitational forces on particles using a PM scheme """ if mesh_shape is None: mesh_shape = delta_k.shape kvec = fftk(mesh_shape, comms=comms) if delta_k is None: delta, token = cic_paint(zeros(mesh_shape,comms=comms), positions, halo_size=halo_size, token=token, comms=comms) delta_k, token = fft3d(delta, token=token, comms=comms) # Computes gravitational potential forces_k = apply_gradient_laplace(kfield, kvec) # Computes gravitational forces fx, token = ifft3d(forces_k[...,0], token=token, comms=comms) fx, token = cic_read(fx, positions, halo_size=halo_size, comms=comms) fy, token = ifft3d(forces_k[...,1], token=token, comms=comms) fy, token = cic_read(fy, positions, halo_size=halo_size, comms=comms) fz, token = ifft3d(forces_k[...,2], token=token, comms=comms) fz, token = cic_read(fz, positions, halo_size=halo_size, comms=comms) return jnp.stack([fx,fy,fz],axis=-1), token def lpt(cosmo, initial_conditions, positions, a, token=token, comms=comms): """ Computes first order LPT displacement """ initial_force = pm_forces(positions, delta=initial_conditions, token=token, comms=comms) a = jnp.atleast_1d(a) dx = growth_factor(cosmo, a) * initial_force p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force return dx, p, f, comms def linear_field(mesh_shape, box_size, pk, seed): """ Generate initial conditions. """ kvec = fftk(mesh_shape) kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5 pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2]) field = jax.random.normal(seed, mesh_shape) field = jnp.fft.rfftn(field) * pkmesh**0.5 field = jnp.fft.irfftn(field) return field def make_ode_fn(mesh_shape): def nbody_ode(state, a, cosmo): """ state is a tuple (position, velocities) """ pos, vel = state forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m # Computes the update of position (drift) dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel # Computes the update of velocity (kick) dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces return dpos, dvel return nbody_ode def pgd_correction(pos, params): """ improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671 args: pos: particle positions [npart, 3] params: [alpha, kl, ks] pgd parameters """ kvec = fftk(mesh_shape) delta = cic_paint(jnp.zeros(mesh_shape), pos) alpha, kl, ks = params delta_k = jnp.fft.rfftn(delta) PGD_range=PGD_kernel(kvec, kl, ks) pot_k_pgd=(delta_k * laplace_kernel(kvec))*PGD_range forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k_pgd), pos) for i in range(3)],axis=-1) dpos_pgd = forces_pgd*alpha return dpos_pgd