import jax from jax import jit import jax.numpy as jnp import jax.lax as lax from jaxpm.ops import halo_reduce from jaxpm.kernels import fftk, cic_compensation import jaxdecomp from functools import partial from jax.sharding import Mesh, PartitionSpec as P,NamedSharding from jax.experimental.shard_map import shard_map @partial(jax.jit,static_argnums=(1)) def add_halo(positions , halo_size): positions += jnp.array([halo_size, halo_size, 0]).reshape([-1, 3]) return positions def cic_paint(gpu_mesh,nbody_mesh, positions, halo_size=0, sharding_info=None): """ Paints positions onto mesh mesh: [nx, ny, nz] positions: [npart, 3] """ if sharding_info is not None: @partial(shard_map, mesh=gpu_mesh, in_specs=P('z', 'y'), out_specs=P('z', 'y')) def sharded_pad(arr): padded = jnp.pad(arr,pad_width=((halo_size, halo_size), (halo_size, halo_size), (0, 0))) return padded # Add some padding for the halo exchange with gpu_mesh: nbody_mesh = sharded_pad(nbody_mesh) positions = add_halo(positions , halo_size) with gpu_mesh: positions = jnp.expand_dims(positions, 1) floor = jit(jnp.floor)(positions) connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1], [1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]]) @jit def compute_kernels(positions , neighboor_coords): kernel = (1. - jnp.abs(positions - neighboor_coords)) return (kernel[..., 0] * kernel[..., 1] * kernel[..., 2]) with gpu_mesh: neighboor_coords = jit(jnp.add)(floor , connection) kernel = compute_kernels(positions , neighboor_coords) neighboor_coords = jnp.mod(neighboor_coords.reshape( [-1, 8, 3]).astype('int32'), jnp.array(nbody_mesh.shape)) dnums = jax.lax.ScatterDimensionNumbers( update_window_dims=(), inserted_window_dims=(0, 1, 2), scatter_dims_to_operand_dims=(0, 1, 2)) with gpu_mesh: nbody_mesh = lax.scatter_add(nbody_mesh, neighboor_coords, kernel.reshape([-1, 8]), dnums) if sharding_info == None: return nbody_mesh else: nbody_mesh = halo_reduce(nbody_mesh, sharding_info.halo_extents[0] , gpu_mesh) return nbody_mesh @jax.jit def reduce_and_sum(mesh,neighboor_coords,kernel): return (mesh[neighboor_coords[..., 0], neighboor_coords[..., 1], neighboor_coords[..., 3]]*kernel).sum(axis=-1) def cic_read(gpu_mesh , mesh, positions, halo_size=0, sharding_info=None): """ Paints positions onto mesh mesh: [nx, ny, nz] positions: [npart, 3] """ @partial(shard_map, mesh=gpu_mesh, in_specs=(P('z', 'y'),P()), out_specs=P('z', 'y')) def sharded_pad(arr , padding_width): return jnp.pad(arr,pad_width=padding_width) if sharding_info is not None: # Add some padding and perfom hao exchange to retrieve # neighboring regions # mesh = halo_reduce(mesh, sharding_info) with gpu_mesh: padding_width = jnp.array([(halo_size, halo_size), (halo_size, halo_size), (0, 0)]) #mesh = sharded_pad(mesh,padding_width) mesh = jaxdecomp.halo_exchange(mesh, halo_extents=sharding_info.halo_extents, halo_periods=(True,True,True)) positions = add_halo(positions , halo_size) with gpu_mesh: positions = jnp.expand_dims(positions, 1) floor = jnp.floor(positions) connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1], [1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]]) with gpu_mesh: neighboor_coords = floor + connection kernel = 1. - jnp.abs(positions - neighboor_coords) kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2] neighboor_coords = jnp.mod( neighboor_coords.astype('int32'), jnp.array(mesh.shape)) reduced = reduce_and_sum(mesh,neighboor_coords,kernel) return reduced def cic_paint_2d(mesh, positions, weight): """ Paints positions onto a 2d mesh mesh: [nx, ny] positions: [npart, 2] weight: [npart] """ positions = jnp.expand_dims(positions, 1) floor = jnp.floor(positions) connection = jnp.array([[0, 0], [1., 0], [0., 1], [1., 1]]) neighboor_coords = floor + connection kernel = 1. - jnp.abs(positions - neighboor_coords) kernel = kernel[..., 0] * kernel[..., 1] if weight is not None: kernel = kernel * weight[..., jnp.newaxis] neighboor_coords = jnp.mod(neighboor_coords.reshape( [-1, 4, 2]).astype('int32'), jnp.array(mesh.shape)) dnums = jax.lax.ScatterDimensionNumbers( update_window_dims=(), inserted_window_dims=(0, 1), scatter_dims_to_operand_dims=(0, 1)) mesh = lax.scatter_add(mesh, neighboor_coords, kernel.reshape([-1, 4]), dnums) return mesh def compensate_cic(field): """ Compensate for CiC painting Args: field: input 3D cic-painted field Returns: compensated_field """ nc = field.shape kvec = fftk(nc) delta_k = jnp.fft.rfftn(field) delta_k = cic_compensation(kvec) * delta_k return jnp.fft.irfftn(delta_k)