mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-05 11:20:55 +00:00
Compare commits
6 commits
Author | SHA1 | Date | |
---|---|---|---|
|
cb2a7ab17f | ||
|
d81a2529e7 | ||
|
15f2fb1ee6 | ||
|
ae0f439ae4 | ||
|
ea9fbf6aa8 | ||
|
ad16a0659a |
4 changed files with 250 additions and 300 deletions
|
@ -1,9 +1,17 @@
|
|||
# JaxPM
|
||||
[](https://colab.research.google.com/github/DifferentiableUniverseInitiative/JaxPM/blob/main/notebooks/01-Introduction.ipynb)
|
||||
[](https://pypi.org/project/jaxpm/) [](https://github.com/DifferentiableUniverseInitiative/JaxPM/actions/workflows/tests.yml) <!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
|
||||
[](#contributors-)
|
||||
<!-- ALL-CONTRIBUTORS-BADGE:END -->
|
||||
JAX-powered Cosmological Particle-Mesh N-body Solver
|
||||
|
||||
> ### Note
|
||||
> **The new JaxPM v0.1.xx** supports multi-GPU model distribution while remaining compatible with previous releases. These significant changes are still under development and testing, so please report any issues you encounter.
|
||||
> For the older but more stable version, install:
|
||||
> ```bash
|
||||
> pip install jaxpm==0.0.2
|
||||
> ```
|
||||
|
||||
## Install
|
||||
|
||||
Basic installation can be done using pip:
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -11,7 +11,7 @@ readme = "README.md"
|
|||
requires-python = ">=3.9"
|
||||
license = { file = "LICENSE" }
|
||||
urls = { "Homepage" = "https://github.com/DifferentiableUniverseInitiative/JaxPM" }
|
||||
dependencies = ["jax_cosmo", "jax>=0.4.30", "jaxdecomp>=0.2.2"]
|
||||
dependencies = ["jax_cosmo", "jax>=0.4.35", "jaxdecomp>=0.2.3"]
|
||||
|
||||
[tool.setuptools]
|
||||
packages = ["jaxpm"]
|
||||
|
|
87
tests/test_gradients.py
Normal file
87
tests/test_gradients.py
Normal file
|
@ -0,0 +1,87 @@
|
|||
import jax
|
||||
import pytest
|
||||
from diffrax import (BacksolveAdjoint, Dopri5, ODETerm, PIDController,
|
||||
RecursiveCheckpointAdjoint, SaveAt, diffeqsolve)
|
||||
from helpers import MSE
|
||||
from jax import numpy as jnp
|
||||
|
||||
from jaxpm.distributed import uniform_particles
|
||||
from jaxpm.painting import cic_paint, cic_paint_dx
|
||||
from jaxpm.pm import lpt, make_diffrax_ode
|
||||
|
||||
|
||||
@pytest.mark.single_device
|
||||
@pytest.mark.parametrize("order", [1, 2])
|
||||
@pytest.mark.parametrize("absolute_painting", [True, False])
|
||||
@pytest.mark.parametrize("adjoint", ['DTO', 'OTD'])
|
||||
def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
|
||||
nbody_from_lpt1, nbody_from_lpt2, cosmo, order,
|
||||
absolute_painting, adjoint):
|
||||
|
||||
mesh_shape, _ = simulation_config
|
||||
cosmo._workspace = {}
|
||||
|
||||
if adjoint == 'OTD':
|
||||
pytest.skip("OTD adjoint not implemented yet (needs PFFT3D JVP)")
|
||||
|
||||
adjoint = RecursiveCheckpointAdjoint(
|
||||
) if adjoint == 'DTO' else BacksolveAdjoint(solver=Dopri5())
|
||||
|
||||
@jax.jit
|
||||
@jax.grad
|
||||
def forward_model(initial_conditions, cosmo):
|
||||
|
||||
# Initial displacement
|
||||
if absolute_painting:
|
||||
particles = uniform_particles(mesh_shape)
|
||||
dx, p, _ = lpt(cosmo,
|
||||
initial_conditions,
|
||||
particles,
|
||||
a=lpt_scale_factor,
|
||||
order=order)
|
||||
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
|
||||
y0 = jnp.stack([particles + dx, p])
|
||||
|
||||
else:
|
||||
dx, p, _ = lpt(cosmo,
|
||||
initial_conditions,
|
||||
a=lpt_scale_factor,
|
||||
order=order)
|
||||
ode_fn = ODETerm(
|
||||
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
|
||||
y0 = jnp.stack([dx, p])
|
||||
|
||||
solver = Dopri5()
|
||||
controller = PIDController(rtol=1e-7,
|
||||
atol=1e-7,
|
||||
pcoeff=0.4,
|
||||
icoeff=1,
|
||||
dcoeff=0)
|
||||
|
||||
saveat = SaveAt(t1=True)
|
||||
|
||||
solutions = diffeqsolve(ode_fn,
|
||||
solver,
|
||||
t0=lpt_scale_factor,
|
||||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
adjoint=adjoint,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
if absolute_painting:
|
||||
final_field = cic_paint(jnp.zeros(mesh_shape), solutions.ys[-1, 0])
|
||||
else:
|
||||
final_field = cic_paint_dx(solutions.ys[-1, 0])
|
||||
|
||||
return MSE(final_field,
|
||||
nbody_from_lpt1 if order == 1 else nbody_from_lpt2)
|
||||
|
||||
bad_initial_conditions = initial_conditions + jax.random.normal(
|
||||
jax.random.PRNGKey(0), initial_conditions.shape) * 0.5
|
||||
best_ic = forward_model(initial_conditions, cosmo)
|
||||
bad_ic = forward_model(bad_initial_conditions, cosmo)
|
||||
|
||||
assert jnp.max(best_ic) < 1e-5
|
||||
assert jnp.max(bad_ic) > 1e-5
|
Loading…
Add table
Reference in a new issue