Compare commits

..

No commits in common. "main" and "v0.0.1" have entirely different histories.
main ... v0.0.1

38 changed files with 543 additions and 4733 deletions

View file

@ -13,44 +13,6 @@
"contributions": [
"ideas"
]
},
{
"login": "dlanzieri",
"name": "Denise Lanzieri",
"avatar_url": "https://avatars.githubusercontent.com/u/72620117?v=4",
"profile": "https://github.com/dlanzieri",
"contributions": [
"code"
]
},
{
"login": "ASKabalan",
"name": "Wassim KABALAN",
"avatar_url": "https://avatars.githubusercontent.com/u/83787080?v=4",
"profile": "https://github.com/ASKabalan",
"contributions": [
"code",
"infra",
"review"
]
},
{
"login": "hsimonfroy",
"name": "Hugo Simon-Onfroy",
"avatar_url": "https://avatars.githubusercontent.com/u/85559558?v=4",
"profile": "https://github.com/hsimonfroy",
"contributions": [
"code"
]
},
{
"login": "aboucaud",
"name": "Alexandre Boucaud",
"avatar_url": "https://avatars.githubusercontent.com/u/3065310?v=4",
"profile": "https://aboucaud.github.io",
"contributions": [
"review"
]
}
],
"contributorsPerLine": 7,
@ -58,7 +20,5 @@
"projectOwner": "DifferentiableUniverseInitiative",
"repoType": "github",
"repoHost": "https://github.com",
"skipCi": true,
"commitType": "docs",
"commitConvention": "angular"
"skipCi": true
}

View file

@ -1,21 +0,0 @@
name: Code Formatting
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
- name: Install dependencies
run: |
python -m pip install --upgrade pip isort
python -m pip install pre-commit
- name: Run pre-commit
run: python -m pre_commit run --all-files

View file

@ -1,55 +0,0 @@
name: Upload Python Package
on:
release:
types: [published]
permissions:
contents: read
jobs:
release-build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Build release distributions
run: |
# NOTE: put your own distribution build steps here.
python -m pip install build
python -m build
- name: Upload distributions
uses: actions/upload-artifact@v4
with:
name: release-dists
path: dist/
pypi-publish:
runs-on: ubuntu-latest
needs:
- release-build
permissions:
# IMPORTANT: this permission is mandatory for trusted publishing
id-token: write
environment:
name: pypi
url: https://pypi.org/p/jaxpm
steps:
- name: Retrieve release distributions
uses: actions/download-artifact@v4
with:
name: release-dists
path: dist/
- name: Publish release distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
packages-dir: dist/

View file

@ -1,46 +0,0 @@
name: Tests
on:
push:
branches:
- main
pull_request:
branches:
- main
jobs:
run_tests:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.10" , "3.11" , "3.12"]
steps:
- name: Checkout Source
uses: actions/checkout@v2.3.1
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v2
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
sudo apt-get install -y libopenmpi-dev
python -m pip install --upgrade pip
pip install jax==0.4.35
pip install numpy setuptools cython wheel
pip install git+https://github.com/MP-Gadget/pfft-python
pip install git+https://github.com/MP-Gadget/pmesh
pip install git+https://github.com/ASKabalan/fastpm-python --no-build-isolation
pip install -r requirements-test.txt
pip install .
- name: Run Single Device Tests
run: |
cd tests
pytest -v -m "not distributed"
- name: Run Distributed tests
run: |
pytest -v -m distributed

8
.gitignore vendored
View file

@ -98,11 +98,6 @@ __pypackages__/
celerybeat-schedule
celerybeat.pid
out
traces
*.npy
*.out
# SageMath parsed files
*.sage.py
@ -132,6 +127,3 @@ dmypy.json
# Pyre type checker
.pyre/
# Hide version file
_version.py

View file

@ -1,17 +0,0 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.3.0
hooks:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/google/yapf
rev: v0.40.2
hooks:
- id: yapf
args: ['--parallel', '--in-place']
- repo: https://github.com/pycqa/isort
rev: 5.13.2
hooks:
- id: isort
name: isort (python)

View file

@ -1,6 +1,6 @@
MIT License
Copyright (c) 2021-2025 Differentiable Universe Initiative
Copyright (c) 2021 Differentiable Universe Initiative
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View file

@ -1,2 +0,0 @@
prune notebooks
prune tests

View file

@ -1,35 +1,19 @@
# JaxPM
[![Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/DifferentiableUniverseInitiative/JaxPM/blob/main/notebooks/01-Introduction.ipynb)
[![PyPI version](https://img.shields.io/pypi/v/jaxpm)](https://pypi.org/project/jaxpm/) [![Tests](https://github.com/DifferentiableUniverseInitiative/JaxPM/actions/workflows/tests.yml/badge.svg)](https://github.com/DifferentiableUniverseInitiative/JaxPM/actions/workflows/tests.yml) <!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
[![All Contributors](https://img.shields.io/badge/all_contributors-5-orange.svg?style=flat-square)](#contributors-)
<!-- ALL-CONTRIBUTORS-BADGE:START - Do not remove or modify this section -->
[![All Contributors](https://img.shields.io/badge/all_contributors-1-orange.svg?style=flat-square)](#contributors-) [![Join the chat at https://gitter.im/DifferentiableUniverseInitiative/JaxPM](https://badges.gitter.im/DifferentiableUniverseInitiative/JaxPM.svg)](https://gitter.im/DifferentiableUniverseInitiative/JaxPM?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
<!-- ALL-CONTRIBUTORS-BADGE:END -->
JAX-powered Cosmological Particle-Mesh N-body Solver
> ### Note
> **The new JaxPM v0.1.xx** supports multi-GPU model distribution while remaining compatible with previous releases. These significant changes are still under development and testing, so please report any issues you encounter.
> For the older but more stable version, install:
> ```bash
> pip install jaxpm==0.0.2
> ```
## Install
Basic installation can be done using pip:
```bash
pip install jaxpm
```
For more advanced installation for optimized distribution on gpu clusters, please install jaxDecomp first. See instructions [here](https://github.com/DifferentiableUniverseInitiative/jaxDecomp).
**This project is currently in an early design phase. All inputs are welcome on the [design document](https://github.com/DifferentiableUniverseInitiative/JaxPM/blob/main/design.md)**
## Goals
Provide a modern infrastructure to support differentiable PM N-body simulations using JAX:
- Keep implementation simple and readable, in pure NumPy API
- Transparent distribution using builtin `xmap`
- Any order forward and backward automatic differentiation
- Support automated batching using `vmap`
- Compatibility with external optimizer libraries like `optax`
- Now fully distributable on **multi-GPU and multi-node** systems using [jaxDecomp](https://github.com/DifferentiableUniverseInitiative/jaxDecomp) working with`JAX v0.4.35`
## Open development and use
@ -39,10 +23,6 @@ Current expectations are:
- Everyone is welcome to contribute, and can join the JOSS publication (until it is submitted to the journal).
- Anyone (including main contributors) can use this code as a framework to build and publish their own applications, with no expectation that they *need* to extend authorship to all jaxpm developers.
## Getting Started
To dive into JaxPMs capabilities, please explore the **notebook section** for detailed tutorials and examples on various setups, from single-device simulations to multi-host configurations. You can find the notebooks' [README here](notebooks/README.md) for a structured guide through each tutorial.
## Contributors ✨
@ -52,15 +32,9 @@ Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/d
<!-- prettier-ignore-start -->
<!-- markdownlint-disable -->
<table>
<tbody>
<tr>
<td align="center" valign="top" width="14.28%"><a href="http://flanusse.net"><img src="https://avatars.githubusercontent.com/u/861591?v=4?s=100" width="100px;" alt="Francois Lanusse"/><br /><sub><b>Francois Lanusse</b></sub></a><br /><a href="#ideas-EiffL" title="Ideas, Planning, & Feedback">🤔</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/dlanzieri"><img src="https://avatars.githubusercontent.com/u/72620117?v=4?s=100" width="100px;" alt="Denise Lanzieri"/><br /><sub><b>Denise Lanzieri</b></sub></a><br /><a href="https://github.com/DifferentiableUniverseInitiative/JaxPM/commits?author=dlanzieri" title="Code">💻</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/ASKabalan"><img src="https://avatars.githubusercontent.com/u/83787080?v=4?s=100" width="100px;" alt="Wassim KABALAN"/><br /><sub><b>Wassim KABALAN</b></sub></a><br /><a href="https://github.com/DifferentiableUniverseInitiative/JaxPM/commits?author=ASKabalan" title="Code">💻</a> <a href="#infra-ASKabalan" title="Infrastructure (Hosting, Build-Tools, etc)">🚇</a> <a href="https://github.com/DifferentiableUniverseInitiative/JaxPM/pulls?q=is%3Apr+reviewed-by%3AASKabalan" title="Reviewed Pull Requests">👀</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://github.com/hsimonfroy"><img src="https://avatars.githubusercontent.com/u/85559558?v=4?s=100" width="100px;" alt="Hugo Simon-Onfroy"/><br /><sub><b>Hugo Simon-Onfroy</b></sub></a><br /><a href="https://github.com/DifferentiableUniverseInitiative/JaxPM/commits?author=hsimonfroy" title="Code">💻</a></td>
<td align="center" valign="top" width="14.28%"><a href="https://aboucaud.github.io"><img src="https://avatars.githubusercontent.com/u/3065310?v=4?s=100" width="100px;" alt="Alexandre Boucaud"/><br /><sub><b>Alexandre Boucaud</b></sub></a><br /><a href="https://github.com/DifferentiableUniverseInitiative/JaxPM/pulls?q=is%3Apr+reviewed-by%3Aaboucaud" title="Reviewed Pull Requests">👀</a></td>
</tr>
</tbody>
<tr>
<td align="center"><a href="http://flanusse.net"><img src="https://avatars.githubusercontent.com/u/861591?v=4?s=100" width="100px;" alt=""/><br /><sub><b>Francois Lanusse</b></sub></a><br /><a href="#ideas-EiffL" title="Ideas, Planning, & Feedback">🤔</a></td>
</tr>
</table>
<!-- markdownlint-restore -->

52
design.md Normal file
View file

@ -0,0 +1,52 @@
# Design Document for JaxPM
This document aims to detail some of the API, implementation choices, and internal mechanism.
## Objective
Provide a user-friendly framework for distributed Particle-Mesh N-body simulations.
## Related Work
This project would be the latest iteration of a number of past libraries that have provided differentiable N-body models.
- [FlowPM](https://github.com/DifferentiableUniverseInitiative/flowpm): TensorFlow
- [vmad FastPM](https://github.com/rainwoodman/vmad/blob/master/vmad/lib/fastpm.py): VMAD
- Borg
In addition, a number of fast N-body simulation projets exist out there:
- [FastPM](https://github.com/fastpm/fastpm)
- ...
## Design Overview
### Coding principles
Following recent trends and JAX philosophy, the library should have a functional programming type of interface.
### Illustration of API
Here is a potential illustration of what the user interface could be for the simulation code:
```python
import jaxpm as jpm
import jax_cosmo as jc
# Instantiate differentiable cosmology object
cosmo = jc.Planck()
# Creates initial conditions
inital_conditions = jpm.generate_ic(cosmo, boxsize, nmesh, dtype='float32')
# Create a particular solver
solver = jpm.solvers.fastpm(cosmo, B=1)
# Initialize and run the simulation
state = solver.init(initial_conditions)
state = solver.nbody(state)
# Painting the results
density = jpm.zeros(boxsize, nmesh)
density = jpm.paint(density, state.positions)
```

63
dev/test_script.py Normal file
View file

@ -0,0 +1,63 @@
# Start this script with:
# mpirun -np 4 python test_script.py
import os
os.environ["XLA_FLAGS"] = '--xla_force_host_platform_device_count=4'
import matplotlib.pylab as plt
import jax
import numpy as np
import jax.numpy as jnp
import jax.lax as lax
from jax.experimental.maps import mesh, xmap
from jax.experimental.pjit import PartitionSpec, pjit
import tensorflow_probability as tfp; tfp = tfp.substrates.jax
tfd = tfp.distributions
def cic_paint(mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [npart, 3]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0],
[0., 0, 1], [1., 1, 0], [1., 0, 1],
[0., 1, 1], [1., 1, 1]]])
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
dnums = jax.lax.ScatterDimensionNumbers(
update_window_dims=(),
inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1, 2))
mesh = lax.scatter_add(mesh,
neighboor_coords.reshape([-1,8,3]).astype('int32'),
kernel.reshape([-1,8]),
dnums)
return mesh
# And let's draw some points from some 3D distribution
dist = tfd.MultivariateNormalDiag(loc=[16.,16.,16.], scale_identity_multiplier=3.)
pos = dist.sample(1e4, seed=jax.random.PRNGKey(0))
f = pjit(lambda x: cic_paint(x, pos),
in_axis_resources=PartitionSpec('x', 'y', 'z'),
out_axis_resources=None)
devices = np.array(jax.devices()).reshape((2, 2, 1))
# Let's import the mesh
m = jnp.zeros([32, 32, 32])
with mesh(devices, ('x', 'y', 'z')):
# Shard the mesh, I'm not sure this is absolutely necessary
m = pjit(lambda x: x,
in_axis_resources=None,
out_axis_resources=PartitionSpec('x', 'y', 'z'))(m)
# Apply the sharded CiC function
res = f(m)
plt.imshow(res.sum(axis=2))
plt.show()

View file

@ -1,198 +0,0 @@
from typing import Any, Callable, Hashable
Specs = Any
AxisName = Hashable
from functools import partial
import jax
import jax.numpy as jnp
import jaxdecomp
from jax import lax
from jax.experimental.shard_map import shard_map
from jax.sharding import AbstractMesh, Mesh
from jax.sharding import PartitionSpec as P
def autoshmap(
f: Callable,
gpu_mesh: Mesh | AbstractMesh | None,
in_specs: Specs,
out_specs: Specs,
check_rep: bool = False,
auto: frozenset[AxisName] = frozenset()) -> Callable:
"""Helper function to wrap the provided function in a shard map if
the code is being executed in a mesh context."""
if gpu_mesh is None or gpu_mesh.empty:
return f
else:
return shard_map(f, gpu_mesh, in_specs, out_specs, check_rep, auto)
def fft3d(x):
return jaxdecomp.pfft3d(x)
def ifft3d(x):
return jaxdecomp.pifft3d(x).real
def get_halo_size(halo_size, sharding):
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is None or gpu_mesh.empty:
zero_ext = (0, 0)
zero_tuple = (0, 0)
return (zero_tuple, zero_tuple, zero_tuple), zero_ext
else:
pdims = gpu_mesh.devices.shape
halo_x = (0, 0) if pdims[0] == 1 else (halo_size, halo_size)
halo_y = (0, 0) if pdims[1] == 1 else (halo_size, halo_size)
halo_x_ext = 0 if pdims[0] == 1 else halo_size // 2
halo_y_ext = 0 if pdims[1] == 1 else halo_size // 2
return ((halo_x, halo_y, (0, 0)), (halo_x_ext, halo_y_ext))
def halo_exchange(x, halo_extents, halo_periods=(True, True)):
if (halo_extents[0] > 0 or halo_extents[1] > 0):
return jaxdecomp.halo_exchange(x, halo_extents, halo_periods)
else:
return x
def slice_unpad_impl(x, pad_width):
halo_x, _ = pad_width[0]
halo_y, _ = pad_width[1]
# Apply corrections along x
x = x.at[halo_x:halo_x + halo_x // 2].add(x[:halo_x // 2])
x = x.at[-(halo_x + halo_x // 2):-halo_x].add(x[-halo_x // 2:])
# Apply corrections along y
x = x.at[:, halo_y:halo_y + halo_y // 2].add(x[:, :halo_y // 2])
x = x.at[:, -(halo_y + halo_y // 2):-halo_y].add(x[:, -halo_y // 2:])
unpad_slice = [slice(None)] * 3
if halo_x > 0:
unpad_slice[0] = slice(halo_x, -halo_x)
if halo_y > 0:
unpad_slice[1] = slice(halo_y, -halo_y)
return x[tuple(unpad_slice)]
def slice_pad(x, pad_width, sharding):
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is not None and not (gpu_mesh.empty) and (
pad_width[0][0] > 0 or pad_width[1][0] > 0):
assert sharding is not None
spec = sharding.spec
return shard_map((partial(jnp.pad, pad_width=pad_width)),
mesh=gpu_mesh,
in_specs=spec,
out_specs=spec)(x)
else:
return x
def slice_unpad(x, pad_width, sharding):
mesh = sharding.mesh if sharding is not None else None
if mesh is not None and not (mesh.empty) and (pad_width[0][0] > 0
or pad_width[1][0] > 0):
assert sharding is not None
spec = sharding.spec
return shard_map(partial(slice_unpad_impl, pad_width=pad_width),
mesh=mesh,
in_specs=spec,
out_specs=spec)(x)
else:
return x
def get_local_shape(mesh_shape, sharding=None):
""" Helper function to get the local size of a mesh given the global size.
"""
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is None or gpu_mesh.empty:
return mesh_shape
else:
pdims = gpu_mesh.devices.shape
return [
mesh_shape[0] // pdims[0], mesh_shape[1] // pdims[1],
*mesh_shape[2:]
]
def _axis_names(spec):
if len(spec) == 1:
x_axis, = spec
y_axis = None
single_axis = True
elif len(spec) == 2:
x_axis, y_axis = spec
if y_axis == None:
single_axis = True
elif x_axis == None:
x_axis = y_axis
single_axis = True
else:
single_axis = False
else:
raise ValueError("Only 1 or 2 axis sharding is supported")
return x_axis, y_axis, single_axis
def uniform_particles(mesh_shape, sharding=None):
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is not None and not (gpu_mesh.empty):
local_mesh_shape = get_local_shape(mesh_shape, sharding)
spec = sharding.spec
x_axis, y_axis, single_axis = _axis_names(spec)
def particles():
x_indx = lax.axis_index(x_axis)
y_indx = 0 if single_axis else lax.axis_index(y_axis)
x = jnp.arange(local_mesh_shape[0]) + x_indx * local_mesh_shape[0]
y = jnp.arange(local_mesh_shape[1]) + y_indx * local_mesh_shape[1]
z = jnp.arange(local_mesh_shape[2])
return jnp.stack(jnp.meshgrid(x, y, z, indexing='ij'), axis=-1)
return shard_map(particles, mesh=gpu_mesh, in_specs=(),
out_specs=spec)()
else:
return jnp.stack(jnp.meshgrid(*[jnp.arange(s) for s in mesh_shape],
indexing='ij'),
axis=-1)
def normal_field(mesh_shape, seed, sharding=None):
"""Generate a Gaussian random field with the given power spectrum."""
gpu_mesh = sharding.mesh if sharding is not None else None
if gpu_mesh is not None and not (gpu_mesh.empty):
local_mesh_shape = get_local_shape(mesh_shape, sharding)
size = jax.device_count()
# rank = jax.process_index()
# process_index is multi_host only
# to make the code work both in multi host and single controller we can do this trick
keys = jax.random.split(seed, size)
spec = sharding.spec
x_axis, y_axis, single_axis = _axis_names(spec)
def normal(keys, shape, dtype):
idx = lax.axis_index(x_axis)
if not single_axis:
y_index = lax.axis_index(y_axis)
x_size = lax.psum(1, axis_name=x_axis)
idx += y_index * x_size
return jax.random.normal(key=keys[idx], shape=shape, dtype=dtype)
return shard_map(
partial(normal, shape=local_mesh_shape, dtype='float32'),
mesh=gpu_mesh,
in_specs=P(None),
out_specs=spec)(keys) # yapf: disable
else:
return jax.random.normal(shape=mesh_shape, key=seed)

View file

@ -1,8 +1,8 @@
import jax.numpy as np
from jax.numpy import interp
from jax_cosmo.background import *
from jax_cosmo.scipy.ode import odeint
from jax_cosmo.scipy.interpolate import interp
from jax_cosmo.scipy.ode import odeint
from jax_cosmo.background import *
def E(cosmo, a):
r"""Scale factor dependent factor E(a) in the Hubble
@ -52,8 +52,12 @@ def df_de(cosmo, a, epsilon=1e-5):
\frac{df}{da}(a) = =\frac{3w_a \left( \ln(a-\epsilon)-
\frac{a-1}{a-\epsilon}\right)}{\ln^2(a-\epsilon)}
"""
return (3 * cosmo.wa * (np.log(a - epsilon) - (a - 1) / (a - epsilon)) /
np.power(np.log(a - epsilon), 2))
return (
3
* cosmo.wa
* (np.log(a - epsilon) - (a - 1) / (a - epsilon))
/ np.power(np.log(a - epsilon), 2)
)
def dEa(cosmo, a):
@ -85,11 +89,15 @@ def dEa(cosmo, a):
where :math:`f(a)` is the Dark Energy evolution parameter computed
by :py:meth:`.f_de`.
"""
return (0.5 *
(-3 * cosmo.Omega_m * np.power(a, -4) -
2 * cosmo.Omega_k * np.power(a, -3) +
df_de(cosmo, a) * cosmo.Omega_de * np.power(a, f_de(cosmo, a))) /
np.power(Esqr(cosmo, a), 0.5))
return (
0.5
* (
-3 * cosmo.Omega_m * np.power(a, -4)
- 2 * cosmo.Omega_k * np.power(a, -3)
+ df_de(cosmo, a) * cosmo.Omega_de * np.power(a, f_de(cosmo, a))
)
/ np.power(Esqr(cosmo, a), 0.5)
)
def growth_factor(cosmo, a):
@ -147,7 +155,8 @@ def growth_factor_second(cosmo, a):
"""
if cosmo._flags["gamma_growth"]:
raise NotImplementedError(
"Gamma growth rate is not implemented for second order growth!")
"Gamma growth rate is not implemented for second order growth!"
)
return None
else:
return _growth_factor_second_ODE(cosmo, a)
@ -219,7 +228,8 @@ def growth_rate_second(cosmo, a):
"""
if cosmo._flags["gamma_growth"]:
raise NotImplementedError(
"Gamma growth factor is not implemented for second order growth!")
"Gamma growth factor is not implemented for second order growth!"
)
return None
else:
return _growth_rate_second_ODE(cosmo, a)
@ -248,19 +258,23 @@ def _growth_factor_ODE(cosmo, a, log10_amin=-3, steps=128, eps=1e-4):
atab = np.logspace(log10_amin, 0.0, steps)
def D_derivs(y, x):
q = (2.0 - 0.5 *
(Omega_m_a(cosmo, x) +
(1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x))) / x
q = (
2.0
- 0.5
* (
Omega_m_a(cosmo, x)
+ (1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x)
)
) / x
r = 1.5 * Omega_m_a(cosmo, x) / x / x
g1, g2 = y[0]
f1, f2 = y[1]
dy1da = [f1, -q * f1 + r * g1]
dy2da = [f2, -q * f2 + r * g2 - r * g1**2]
dy2da = [f2, -q * f2 + r * g2 - r * g1 ** 2]
return np.array([[dy1da[0], dy2da[0]], [dy1da[1], dy2da[1]]])
y0 = np.array([[atab[0], -3.0 / 7 * atab[0]**2],
[1.0, -6.0 / 7 * atab[0]]])
y0 = np.array([[atab[0], -3.0 / 7 * atab[0] ** 2], [1.0, -6.0 / 7 * atab[0]]])
y = odeint(D_derivs, y0, atab)
# compute second order derivatives growth
@ -459,7 +473,8 @@ def _growth_rate_gamma(cosmo, a):
see :cite:`2019:Euclid Preparation VII, eqn.32`
"""
return Omega_m_a(cosmo, a)**cosmo.gamma
return Omega_m_a(cosmo, a) ** cosmo.gamma
def Gf(cosmo, a):
@ -488,7 +503,7 @@ def Gf(cosmo, a):
"""
f1 = growth_rate(cosmo, a)
g1 = growth_factor(cosmo, a)
D1f = f1 * g1 / a
D1f = f1*g1/ a
return D1f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
@ -517,7 +532,7 @@ def Gf2(cosmo, a):
"""
f2 = growth_rate_second(cosmo, a)
g2 = growth_factor_second(cosmo, a)
D2f = f2 * g2 / a
D2f = f2*g2/ a
return D2f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
@ -548,12 +563,13 @@ def dGfa(cosmo, a):
"""
f1 = growth_rate(cosmo, a)
g1 = growth_factor(cosmo, a)
D1f = f1 * g1 / a
D1f = f1*g1/ a
cache = cosmo._workspace['background.growth_factor']
f1p = cache['h'] / cache['a'] * cache['g']
f1p = interp(np.log(a), np.log(cache['a']), f1p)
Ea = E(cosmo, a)
return (f1p * a**3 * Ea + D1f * a**3 * dEa(cosmo, a) + 3 * a**2 * Ea * D1f)
return (f1p * a**3 * Ea + D1f * a**3 * dEa(cosmo, a) +
3 * a**2 * Ea * D1f)
def dGf2a(cosmo, a):
@ -583,10 +599,10 @@ def dGf2a(cosmo, a):
"""
f2 = growth_rate_second(cosmo, a)
g2 = growth_factor_second(cosmo, a)
D2f = f2 * g2 / a
D2f = f2*g2/ a
cache = cosmo._workspace['background.growth_factor']
f2p = cache['h2'] / cache['a'] * cache['g2']
f2p = interp(np.log(a), np.log(cache['a']), f2p)
E_a = E(cosmo, a)
return (f2p * a**3 * E_a + D2f * a**3 * dEa(cosmo, a) +
3 * a**2 * E_a * D2f)
E = E(cosmo, a)
return (f2p * a**3 * E + D2f * a**3 * dEa(cosmo, a) +
3 * a**2 * E * D2f)

View file

@ -1,165 +1,126 @@
import jax.numpy as jnp
import numpy as np
from jax.lax import FftType
from jax.sharding import PartitionSpec as P
from jaxdecomp import fftfreq3d, get_output_specs
import jax.numpy as jnp
from jaxpm.distributed import autoshmap
def fftk(k_array):
"""
Generate Fourier transform wave numbers for a given mesh.
Args:
nc (int): Shape of the mesh grid.
Returns:
list: List of wave number arrays for each dimension in
the order [kx, ky, kz].
"""
kx, ky, kz = fftfreq3d(k_array)
# to the order of dimensions in the transposed FFT
return kx, ky, kz
def interpolate_power_spectrum(input, k, pk, sharding=None):
pk_fn = lambda x: jnp.interp(x.reshape(-1), k, pk).reshape(x.shape)
gpu_mesh = sharding.mesh if sharding is not None else None
specs = sharding.spec if sharding is not None else P()
out_specs = P(*get_output_specs(
FftType.FFT, specs, mesh=gpu_mesh)) if gpu_mesh is not None else P()
return autoshmap(pk_fn,
gpu_mesh=gpu_mesh,
in_specs=out_specs,
out_specs=out_specs)(input)
def fftk(shape, symmetric=True, finite=False, dtype=np.float32):
""" Return k_vector given a shape (nc, nc, nc) and box_size
"""
k = []
for d in range(len(shape)):
kd = np.fft.fftfreq(shape[d])
kd *= 2 * np.pi
kdshape = np.ones(len(shape), dtype='int')
if symmetric and d == len(shape) - 1:
kd = kd[:shape[d] // 2 + 1]
kdshape[d] = len(kd)
kd = kd.reshape(kdshape)
k.append(kd.astype(dtype))
del kd, kdshape
return k
def gradient_kernel(kvec, direction, order=1):
"""
Computes the gradient kernel in the requested direction
Parameters
-----------
kvec: list
List of wave-vectors in Fourier space
direction: int
Index of the direction in which to take the gradient
Returns
--------
wts: array
Complex kernel values
"""
if order == 0:
wts = 1j * kvec[direction]
wts = jnp.squeeze(wts)
wts[len(wts) // 2] = 0
wts = wts.reshape(kvec[direction].shape)
return wts
else:
w = kvec[direction]
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
wts = a * 1j
return wts
def invlaplace_kernel(kvec, fd=False):
"""
Compute the inverse Laplace kernel.
cf. [Feng+2016](https://arxiv.org/pdf/1603.00476)
Parameters
-----------
kvec: list
List of wave-vectors
fd: bool
Finite difference kernel
Returns
--------
wts: array
Complex kernel values
"""
if fd:
kk = sum((ki * jnp.sinc(ki / (2 * jnp.pi)))**2 for ki in kvec)
else:
kk = sum(ki**2 for ki in kvec)
kk_nozeros = jnp.where(kk == 0, 1, kk)
return -jnp.where(kk == 0, 0, 1 / kk_nozeros)
def longrange_kernel(kvec, r_split):
"""
Computes a long range kernel
Parameters
-----------
kvec: list
List of wave-vectors
r_split: float
Splitting radius
Returns
--------
wts: array
Complex kernel values
TODO: @modichirag add documentation
"""
if r_split != 0:
kk = sum(ki**2 for ki in kvec)
return np.exp(-kk * r_split**2)
else:
return 1.
def cic_compensation(kvec):
"""
Computes cic compensation kernel.
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
Itself based on equation 18 (with p=2) of
[Jing et al 2005](https://arxiv.org/abs/astro-ph/0409240)
Parameters:
-----------
kvec: list
List of wave-vectors
Returns:
--------
wts: array
Complex kernel values
"""
kwts = [jnp.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
"""
Computes the gradient kernel in the requested direction
Parameters:
-----------
kvec: array
Array of k values in Fourier space
direction: int
Index of the direction in which to take the gradient
Returns:
--------
wts: array
Complex kernel
"""
if order == 0:
wts = 1j * kvec[direction]
wts = jnp.squeeze(wts)
wts[len(wts) // 2] = 0
wts = wts.reshape(kvec[direction].shape)
return wts
else:
w = kvec[direction]
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
wts = a * 1j
return wts
def laplace_kernel(kvec):
"""
Compute the Laplace kernel from a given K vector
Parameters:
-----------
kvec: array
Array of k values in Fourier space
Returns:
--------
wts: array
Complex kernel
"""
kk = sum(ki**2 for ki in kvec)
mask = (kk == 0).nonzero()
kk[mask] = 1
wts = 1. / kk
imask = (~(kk == 0)).astype(int)
wts *= imask
return wts
def longrange_kernel(kvec, r_split):
"""
Computes a long range kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
r_split: float
TODO: @modichirag add documentation
Returns:
--------
wts: array
kernel
"""
if r_split != 0:
kk = sum(ki**2 for ki in kvec)
return np.exp(-kk * r_split**2)
else:
return 1.
def cic_compensation(kvec):
"""
Computes cic compensation kernel.
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
Itself based on equation 18 (with p=2) of
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
Args:
kvec: array of k values in Fourier space
Returns:
v: array of kernel
"""
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
return wts
def PGD_kernel(kvec, kl, ks):
"""
Computes the PGD kernel
Parameters:
-----------
kvec: list
List of wave-vectors
kl: float
Initial long range scale parameter
ks: float
Initial dhort range scale parameter
Returns:
--------
v: array
Complex kernel values
"""
kk = sum(ki**2 for ki in kvec)
kl2 = kl**2
ks4 = ks**4
mask = (kk == 0).nonzero()
kk[mask] = 1
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
imask = (~(kk == 0)).astype(int)
v *= imask
return v
"""
Computes the PGD kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
kl: float
initial long range scale parameter
ks: float
initial dhort range scale parameter
Returns:
--------
v: array
kernel
"""
kk = sum(ki**2 for ki in kvec)
kl2 = kl**2
ks4 = ks**4
mask = (kk == 0).nonzero()
kk[mask] = 1
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
imask = (~(kk == 0)).astype(int)
v *= imask
return v

View file

@ -1,12 +1,11 @@
import jax
import jax
import jax.numpy as jnp
import jax_cosmo
import jax_cosmo.constants as constants
import jax_cosmo
from jax.scipy.ndimage import map_coordinates
from jaxpm.painting import cic_paint_2d
from jaxpm.utils import gaussian_smoothing
from jaxpm.painting import cic_paint_2d
def density_plane(positions,
box_shape,
@ -27,11 +26,9 @@ def density_plane(positions,
xy = xy / nx * plane_resolution
# Selecting only particles that fall inside the volume of interest
weight = jnp.where(
(d > (center - width / 2)) & (d <= (center + width / 2)), 1., 0.)
weight = jnp.where((d > (center - width / 2)) & (d <= (center + width / 2)), 1., 0.)
# Painting density plane
density_plane = cic_paint_2d(
jnp.zeros([plane_resolution, plane_resolution]), xy, weight)
density_plane = cic_paint_2d(jnp.zeros([plane_resolution, plane_resolution]), xy, weight)
# Apply density normalization
density_plane = density_plane / ((nx / plane_resolution) *
@ -39,44 +36,46 @@ def density_plane(positions,
# Apply Gaussian smoothing if requested
if smoothing_sigma is not None:
density_plane = gaussian_smoothing(density_plane, smoothing_sigma)
density_plane = gaussian_smoothing(density_plane,
smoothing_sigma)
return density_plane
def convergence_Born(cosmo, density_planes, coords, z_source):
"""
def convergence_Born(cosmo,
density_planes,
dx, dz,
coords,
z_source):
"""
Compute the Born convergence
Args:
cosmo: `Cosmology`, cosmology object.
density_planes: list of dictionaries (r, a, density_plane, dx, dz), lens planes to use
density_planes: list of tuples (r, a, density_plane), lens planes to use
dx: float, transverse pixel resolution of the density planes [Mpc/h]
dz: float, width of the density planes [Mpc/h]
coords: a 3-D array of angular coordinates in radians of N points with shape [batch, N, 2].
z_source: 1-D `Tensor` of source redshifts with shape [Nz] .
name: `string`, name of the operation.
Returns:
`Tensor` of shape [batch_size, N, Nz], of convergence values.
"""
# Compute constant prefactor:
constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2
# Compute comoving distance of source galaxies
r_s = jax_cosmo.background.radial_comoving_distance(
cosmo, 1 / (1 + z_source))
# Compute constant prefactor:
constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2
# Compute comoving distance of source galaxies
r_s = jax_cosmo.background.radial_comoving_distance(cosmo, 1 / (1 + z_source))
convergence = 0
for entry in density_planes:
r = entry['r']
a = entry['a']
p = entry['plane']
dx = entry['dx']
dz = entry['dz']
# Normalize density planes
density_normalization = dz * r / a
p = (p - p.mean()) * constant_factor * density_normalization
convergence = 0
for r, a, p in density_planes:
# Normalize density planes
density_normalization = dz * r / a
p = (p - p.mean()) * constant_factor * density_normalization
# Interpolate at the density plane coordinates
im = map_coordinates(p, coords * r / dx - 0.5, order=1, mode="wrap")
# Interpolate at the density plane coordinates
im = map_coordinates(p,
coords * r / dx - 0.5,
order=1, mode="wrap")
convergence += im * jnp.clip(1. -
(r / r_s), 0, 1000).reshape([-1, 1, 1])
convergence += im * jnp.clip(1. - (r / r_s), 0, 1000).reshape([-1, 1, 1])
return convergence
return convergence

View file

@ -1,7 +1,6 @@
import haiku as hk
import jax
import jax.numpy as jnp
import haiku as hk
def _deBoorVectorized(x, t, c, p):
"""
@ -14,47 +13,48 @@ def _deBoorVectorized(x, t, c, p):
c: array of control points
p: degree of B-spline
"""
k = jnp.digitize(x, t) - 1
d = [c[j + k - p] for j in range(0, p + 1)]
for r in range(1, p + 1):
for j in range(p, r - 1, -1):
alpha = (x - t[j + k - p]) / (t[j + 1 + k - r] - t[j + k - p])
d[j] = (1.0 - alpha) * d[j - 1] + alpha * d[j]
k = jnp.digitize(x, t) -1
d = [c[j + k - p] for j in range(0, p+1)]
for r in range(1, p+1):
for j in range(p, r-1, -1):
alpha = (x - t[j+k-p]) / (t[j+1+k-r] - t[j+k-p])
d[j] = (1.0 - alpha) * d[j-1] + alpha * d[j]
return d[p]
class NeuralSplineFourierFilter(hk.Module):
"""A rotationally invariant filter parameterized by
"""A rotationally invariant filter parameterized by
a b-spline with parameters specified by a small NN."""
def __init__(self, n_knots=8, latent_size=16, name=None):
"""
n_knots: number of control points for the spline
def __init__(self, n_knots=8, latent_size=16, name=None):
"""
super().__init__(name=name)
self.n_knots = n_knots
self.latent_size = latent_size
n_knots: number of control points for the spline
"""
super().__init__(name=name)
self.n_knots = n_knots
self.latent_size = latent_size
def __call__(self, x, a):
"""
def __call__(self, x, a):
"""
x: array, scale, normalized to fftfreq default
a: scalar, scale factor
"""
net = jnp.sin(hk.Linear(self.latent_size)(jnp.atleast_1d(a)))
net = jnp.sin(hk.Linear(self.latent_size)(net))
net = jnp.sin(hk.Linear(self.latent_size)(jnp.atleast_1d(a)))
net = jnp.sin(hk.Linear(self.latent_size)(net))
w = hk.Linear(self.n_knots + 1)(net)
k = hk.Linear(self.n_knots - 1)(net)
w = hk.Linear(self.n_knots+1)(net)
k = hk.Linear(self.n_knots-1)(net)
# make sure the knots sum to 1 and are in the interval 0,1
k = jnp.concatenate([jnp.zeros((1,)),
jnp.cumsum(jax.nn.softmax(k))])
# make sure the knots sum to 1 and are in the interval 0,1
k = jnp.concatenate([jnp.zeros((1, )), jnp.cumsum(jax.nn.softmax(k))])
w = jnp.concatenate([jnp.zeros((1,)),
w])
w = jnp.concatenate([jnp.zeros((1, )), w])
# Augment with repeating points
ak = jnp.concatenate([jnp.zeros((3,)), k, jnp.ones((3,))])
# Augment with repeating points
ak = jnp.concatenate([jnp.zeros((3, )), k, jnp.ones((3, ))])
return _deBoorVectorized(jnp.clip(x / jnp.sqrt(3), 0, 1 - 1e-4), ak, w,
3)
return _deBoorVectorized(jnp.clip(x/jnp.sqrt(3), 0, 1-1e-4), ak, w, 3)

View file

@ -1,259 +1,96 @@
from functools import partial
import jax
import jax.lax as lax
import jax.numpy as jnp
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P
import jax.lax as lax
from jaxpm.distributed import (autoshmap, fft3d, get_halo_size, halo_exchange,
ifft3d, slice_pad, slice_unpad)
from jaxpm.kernels import cic_compensation, fftk
from jaxpm.painting_utils import gather, scatter
from jaxpm.kernels import fftk, cic_compensation
def cic_paint(mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [npart, 3]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0],
[0., 0, 1], [1., 1, 0], [1., 0, 1],
[0., 1, 1], [1., 1, 1]]])
def _cic_paint_impl(grid_mesh, positions, weight=None):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
displacement field: [nx, ny, nz, 3]
"""
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
positions = positions.reshape([-1, 3])
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
neighboor_coords = jnp.mod(neighboor_coords.reshape([-1,8,3]).astype('int32'), jnp.array(mesh.shape))
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
if weight is not None:
if jnp.isscalar(weight):
kernel = jnp.multiply(jnp.expand_dims(weight, axis=-1), kernel)
else:
kernel = jnp.multiply(weight.reshape(*positions.shape[:-1]),
kernel)
dnums = jax.lax.ScatterDimensionNumbers(
update_window_dims=(),
inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1, 2))
mesh = lax.scatter_add(mesh,
neighboor_coords,
kernel.reshape([-1,8]),
dnums)
return mesh
neighboor_coords = jnp.mod(
neighboor_coords.reshape([-1, 8, 3]).astype('int32'),
jnp.array(grid_mesh.shape))
def cic_read(mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [npart, 3]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0],
[0., 0, 1], [1., 1, 0], [1., 0, 1],
[0., 1, 1], [1., 1, 1]]])
dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(),
inserted_window_dims=(0, 1, 2),
scatter_dims_to_operand_dims=(0, 1,
2))
mesh = lax.scatter_add(grid_mesh, neighboor_coords,
kernel.reshape([-1, 8]), dnums)
return mesh
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
neighboor_coords = jnp.mod(neighboor_coords.astype('int32'), jnp.array(mesh.shape))
@partial(jax.jit, static_argnums=(3, 4))
def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
positions = positions.reshape((*grid_mesh.shape, 3))
halo_size, halo_extents = get_halo_size(halo_size, sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding)
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
grid_mesh = autoshmap(_cic_paint_impl,
gpu_mesh=gpu_mesh,
in_specs=(spec, spec, P()),
out_specs=spec)(grid_mesh, positions, weight)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
grid_mesh = slice_unpad(grid_mesh, halo_size, sharding)
return grid_mesh
def _cic_read_impl(grid_mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [nx,ny,nz, 3]
"""
# Save original shape for reshaping output later
original_shape = positions.shape
# Reshape positions to a flat list of 3D coordinates
positions = positions.reshape([-1, 3])
# Expand dimensions to calculate neighbor coordinates
positions = jnp.expand_dims(positions, 1)
# Floor the positions to get the base grid cell for each particle
floor = jnp.floor(positions)
# Define connections to calculate all neighbor coordinates
connection = jnp.array([[[0, 0, 0], [1., 0, 0], [0., 1, 0], [0., 0, 1],
[1., 1, 0], [1., 0, 1], [0., 1, 1], [1., 1, 1]]])
# Calculate the 8 neighboring coordinates
neighboor_coords = floor + connection
# Calculate kernel weights based on distance from each neighboring coordinate
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
# Modulo operation to wrap around edges if necessary
neighboor_coords = jnp.mod(neighboor_coords.astype('int32'),
jnp.array(grid_mesh.shape))
# Ensure grid_mesh shape is as expected
# Retrieve values from grid_mesh at each neighboring coordinate and multiply by kernel
return (grid_mesh[neighboor_coords[..., 0],
neighboor_coords[..., 1],
neighboor_coords[..., 2]] * kernel).sum(axis=-1).reshape(original_shape[:-1]) # yapf: disable
@partial(jax.jit, static_argnums=(2, 3))
def cic_read(grid_mesh, positions, halo_size=0, sharding=None):
original_shape = positions.shape
positions = positions.reshape((*grid_mesh.shape, 3))
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding=sharding)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
displacement = autoshmap(_cic_read_impl,
gpu_mesh=gpu_mesh,
in_specs=(spec, spec),
out_specs=spec)(grid_mesh, positions)
return displacement.reshape(original_shape[:-1])
return (mesh[neighboor_coords[...,0],
neighboor_coords[...,1],
neighboor_coords[...,3]]*kernel).sum(axis=-1)
def cic_paint_2d(mesh, positions, weight):
""" Paints positions onto a 2d mesh
mesh: [nx, ny]
positions: [npart, 2]
weight: [npart]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[0, 0], [1., 0], [0., 1], [1., 1]])
""" Paints positions onto a 2d mesh
mesh: [nx, ny]
positions: [npart, 2]
weight: [npart]
"""
positions = jnp.expand_dims(positions, 1)
floor = jnp.floor(positions)
connection = jnp.array([[0, 0], [1., 0], [0., 1], [1., 1]])
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1]
if weight is not None:
kernel = kernel * weight[..., jnp.newaxis]
neighboor_coords = jnp.mod(
neighboor_coords.reshape([-1, 4, 2]).astype('int32'),
jnp.array(mesh.shape))
dnums = jax.lax.ScatterDimensionNumbers(update_window_dims=(),
inserted_window_dims=(0, 1),
scatter_dims_to_operand_dims=(0,
1))
mesh = lax.scatter_add(mesh, neighboor_coords, kernel.reshape([-1, 4]),
dnums)
return mesh
def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
halo_x, _ = halo_size[0]
halo_y, _ = halo_size[1]
original_shape = displacements.shape
particle_mesh = jnp.zeros(original_shape[:-1], dtype='float32')
if not jnp.isscalar(weight):
if weight.shape != original_shape[:-1]:
raise ValueError("Weight shape must match particle shape")
else:
weight = weight.flatten()
# Padding is forced to be zero in a single gpu run
a, b, c = jnp.meshgrid(jnp.arange(particle_mesh.shape[0]),
jnp.arange(particle_mesh.shape[1]),
jnp.arange(particle_mesh.shape[2]),
indexing='ij')
particle_mesh = jnp.pad(particle_mesh, halo_size)
pmid = jnp.stack([a + halo_x, b + halo_y, c], axis=-1)
return scatter(pmid.reshape([-1, 3]),
displacements.reshape([-1, 3]),
particle_mesh,
chunk_size=2**24,
val=weight)
@partial(jax.jit, static_argnums=(1, 2, 4))
def cic_paint_dx(displacements,
halo_size=0,
sharding=None,
weight=1.0,
chunk_size=2**24):
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
grid_mesh = autoshmap(partial(_cic_paint_dx_impl,
halo_size=halo_size,
weight=weight,
chunk_size=chunk_size),
gpu_mesh=gpu_mesh,
in_specs=spec,
out_specs=spec)(displacements)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
grid_mesh = slice_unpad(grid_mesh, halo_size, sharding)
return grid_mesh
def _cic_read_dx_impl(grid_mesh, disp, halo_size):
halo_x, _ = halo_size[0]
halo_y, _ = halo_size[1]
original_shape = [
dim - 2 * halo[0] for dim, halo in zip(grid_mesh.shape, halo_size)
]
a, b, c = jnp.meshgrid(jnp.arange(original_shape[0]),
jnp.arange(original_shape[1]),
jnp.arange(original_shape[2]),
indexing='ij')
pmid = jnp.stack([a + halo_x, b + halo_y, c], axis=-1)
pmid = pmid.reshape([-1, 3])
disp = disp.reshape([-1, 3])
return gather(pmid, disp, grid_mesh).reshape(original_shape)
@partial(jax.jit, static_argnums=(2, 3))
def cic_read_dx(grid_mesh, disp, halo_size=0, sharding=None):
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding=sharding)
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
displacements = autoshmap(partial(_cic_read_dx_impl, halo_size=halo_size),
gpu_mesh=gpu_mesh,
in_specs=(spec),
out_specs=spec)(grid_mesh, disp)
return displacements
neighboor_coords = floor + connection
kernel = 1. - jnp.abs(positions - neighboor_coords)
kernel = kernel[..., 0] * kernel[..., 1]
if weight is not None:
kernel = kernel * weight[...,jnp.newaxis]
neighboor_coords = jnp.mod(neighboor_coords.reshape([-1,4,2]).astype('int32'), jnp.array(mesh.shape))
dnums = jax.lax.ScatterDimensionNumbers(
update_window_dims=(),
inserted_window_dims=(0, 1),
scatter_dims_to_operand_dims=(0, 1))
mesh = lax.scatter_add(mesh,
neighboor_coords,
kernel.reshape([-1,4]),
dnums)
return mesh
def compensate_cic(field):
"""
Compensate for CiC painting
Args:
field: input 3D cic-painted field
Returns:
compensated_field
"""
delta_k = fft3d(field)
"""
Compensate for CiC painting
Args:
field: input 3D cic-painted field
Returns:
compensated_field
"""
nc = field.shape
kvec = fftk(nc)
kvec = fftk(delta_k)
delta_k = cic_compensation(kvec) * delta_k
return ifft3d(delta_k)
delta_k = jnp.fft.rfftn(field)
delta_k = cic_compensation(kvec) * delta_k
return jnp.fft.irfftn(delta_k)

View file

@ -1,190 +0,0 @@
import jax
import jax.numpy as jnp
from jax.lax import scan
def _chunk_split(ptcl_num, chunk_size, *arrays):
"""Split and reshape particle arrays into chunks and remainders, with the remainders
preceding the chunks. 0D ones are duplicated as full arrays in the chunks."""
chunk_size = ptcl_num if chunk_size is None else min(chunk_size, ptcl_num)
remainder_size = ptcl_num % chunk_size
chunk_num = ptcl_num // chunk_size
remainder = None
chunks = arrays
if remainder_size:
remainder = [x[:remainder_size] if x.ndim != 0 else x for x in arrays]
chunks = [x[remainder_size:] if x.ndim != 0 else x for x in arrays]
# `scan` triggers errors in scatter and gather without the `full`
chunks = [
x.reshape(chunk_num, chunk_size, *x.shape[1:])
if x.ndim != 0 else jnp.full(chunk_num, x) for x in chunks
]
return remainder, chunks
def enmesh(base_indices, displacements, cell_size, base_shape, offset,
new_cell_size, new_shape):
"""Multilinear enmeshing."""
base_indices = jnp.asarray(base_indices)
displacements = jnp.asarray(displacements)
with jax.experimental.enable_x64():
cell_size = jnp.float64(
cell_size) if new_cell_size is not None else jnp.array(
cell_size, dtype=displacements.dtype)
if base_shape is not None:
base_shape = jnp.array(base_shape, dtype=base_indices.dtype)
offset = jnp.float64(offset)
if new_cell_size is not None:
new_cell_size = jnp.float64(new_cell_size)
if new_shape is not None:
new_shape = jnp.array(new_shape, dtype=base_indices.dtype)
spatial_dim = base_indices.shape[1]
neighbor_offsets = (
jnp.arange(2**spatial_dim, dtype=base_indices.dtype)[:, jnp.newaxis] >>
jnp.arange(spatial_dim, dtype=base_indices.dtype)) & 1
if new_cell_size is not None:
particle_positions = base_indices * cell_size + displacements - offset
particle_positions = particle_positions[:, jnp.
newaxis] # insert neighbor axis
new_indices = particle_positions + neighbor_offsets * new_cell_size # multilinear
if base_shape is not None:
grid_length = base_shape * cell_size
new_indices %= grid_length
new_indices //= new_cell_size
new_displacements = particle_positions - new_indices * new_cell_size
if base_shape is not None:
new_displacements -= jnp.rint(
new_displacements / grid_length
) * grid_length # also abs(new_displacements) < new_cell_size is expected
new_indices = new_indices.astype(base_indices.dtype)
new_displacements = new_displacements.astype(displacements.dtype)
new_cell_size = new_cell_size.astype(displacements.dtype)
new_displacements /= new_cell_size
else:
offset_indices, offset_displacements = jnp.divmod(offset, cell_size)
base_indices -= offset_indices.astype(base_indices.dtype)
displacements -= offset_displacements.astype(displacements.dtype)
# insert neighbor axis
base_indices = base_indices[:, jnp.newaxis]
displacements = displacements[:, jnp.newaxis]
# multilinear
displacements /= cell_size
new_indices = jnp.floor(displacements).astype(base_indices.dtype)
new_indices += neighbor_offsets
new_displacements = displacements - new_indices
new_indices += base_indices
if base_shape is not None:
new_indices %= base_shape
weights = 1 - jnp.abs(new_displacements)
if base_shape is None and new_shape is not None: # all new_indices >= 0 if base_shape is not None
new_indices = jnp.where(new_indices < 0, new_shape, new_indices)
weights = weights.prod(axis=-1)
return new_indices, weights
def _scatter_chunk(carry, chunk):
mesh, offset, cell_size, mesh_shape = carry
pmid, disp, val = chunk
spatial_ndim = pmid.shape[1]
spatial_shape = mesh.shape
# multilinear mesh indices and fractions
ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size,
spatial_shape)
# scatter
ind = tuple(ind[..., i] for i in range(spatial_ndim))
mesh = mesh.at[ind].add(jnp.multiply(jnp.expand_dims(val, axis=-1), frac))
carry = mesh, offset, cell_size, mesh_shape
return carry, None
def scatter(pmid,
disp,
mesh,
chunk_size=2**24,
val=1.,
offset=0,
cell_size=1.):
ptcl_num, spatial_ndim = pmid.shape
val = jnp.asarray(val)
mesh = jnp.asarray(mesh)
remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val)
carry = mesh, offset, cell_size, mesh.shape
if remainder is not None:
carry = _scatter_chunk(carry, remainder)[0]
carry = scan(_scatter_chunk, carry, chunks)[0]
mesh = carry[0]
return mesh
def _chunk_cat(remainder_array, chunked_array):
"""Reshape and concatenate one remainder and one chunked particle arrays."""
array = chunked_array.reshape(-1, *chunked_array.shape[2:])
if remainder_array is not None:
array = jnp.concatenate((remainder_array, array), axis=0)
return array
def gather(pmid, disp, mesh, chunk_size=2**24, val=0, offset=0, cell_size=1.):
ptcl_num, spatial_ndim = pmid.shape
mesh = jnp.asarray(mesh)
val = jnp.asarray(val)
if mesh.shape[spatial_ndim:] != val.shape[1:]:
raise ValueError('channel shape mismatch: '
f'{mesh.shape[spatial_ndim:]} != {val.shape[1:]}')
remainder, chunks = _chunk_split(ptcl_num, chunk_size, pmid, disp, val)
carry = mesh, offset, cell_size, mesh.shape
val_0 = None
if remainder is not None:
val_0 = _gather_chunk(carry, remainder)[1]
val = scan(_gather_chunk, carry, chunks)[1]
val = _chunk_cat(val_0, val)
return val
def _gather_chunk(carry, chunk):
mesh, offset, cell_size, mesh_shape = carry
pmid, disp, val = chunk
spatial_ndim = pmid.shape[1]
spatial_shape = mesh.shape[:spatial_ndim]
chan_ndim = mesh.ndim - spatial_ndim
chan_axis = tuple(range(-chan_ndim, 0))
# multilinear mesh indices and fractions
ind, frac = enmesh(pmid, disp, cell_size, mesh_shape, offset, cell_size,
spatial_shape)
# gather
ind = tuple(ind[..., i] for i in range(spatial_ndim))
frac = jnp.expand_dims(frac, chan_axis)
val += (mesh.at[ind].get(mode='drop', fill_value=0) * frac).sum(axis=1)
return carry, val

View file

@ -1,129 +0,0 @@
import matplotlib.pyplot as plt
import numpy as np
def plot_fields(fields_dict, sum_over=None):
"""
Plots sum projections of 3D fields along different axes,
slicing only the first `sum_over` elements along each axis.
Args:
- fields: list of 3D arrays representing fields to plot
- names: list of names for each field, used in titles
- sum_over: number of slices to sum along each axis (default: fields[0].shape[0] // 8)
"""
sum_over = sum_over or list(fields_dict.values())[0].shape[0] // 8
nb_rows = len(fields_dict)
nb_cols = 3
fig, axes = plt.subplots(nb_rows, nb_cols, figsize=(15, 5 * nb_rows))
def plot_subplots(proj_axis, field, row, title):
slicing = [slice(None)] * field.ndim
slicing[proj_axis] = slice(None, sum_over)
slicing = tuple(slicing)
# Sum projection over the specified axis and plot
axes[row, proj_axis].imshow(
field[slicing].sum(axis=proj_axis) + 1,
cmap='magma',
extent=[0, field.shape[proj_axis], 0, field.shape[proj_axis]])
axes[row, proj_axis].set_xlabel('Mpc/h')
axes[row, proj_axis].set_ylabel('Mpc/h')
axes[row, proj_axis].set_title(title)
# Plot each field across the three axes
for i, (name, field) in enumerate(fields_dict.items()):
for proj_axis in range(3):
plot_subplots(proj_axis, field, i,
f"{name} projection {proj_axis}")
plt.tight_layout()
plt.show()
def plot_fields_single_projection(fields_dict,
sum_over=None,
project_axis=0,
vmin=None,
vmax=None,
colorbar=False):
"""
Plots a single projection (along axis 0) of 3D fields in a grid,
summing over the first `sum_over` elements along the 0-axis, with 4 images per row.
Args:
- fields_dict: dictionary where keys are field names and values are 3D arrays
- sum_over: number of slices to sum along the projection axis (default: fields[0].shape[0] // 8)
"""
sum_over = sum_over or list(fields_dict.values())[0].shape[0] // 8
nb_fields = len(fields_dict)
nb_cols = 4 # Set number of images per row
nb_rows = (nb_fields + nb_cols - 1) // nb_cols # Calculate required rows
fig, axes = plt.subplots(nb_rows,
nb_cols,
figsize=(5 * nb_cols, 5 * nb_rows))
axes = np.atleast_2d(axes) # Ensure axes is always a 2D array
for i, (name, field) in enumerate(fields_dict.items()):
row, col = divmod(i, nb_cols)
# Define the slice for the 0-axis projection
slicing = [slice(None)] * field.ndim
slicing[project_axis] = slice(None, sum_over)
slicing = tuple(slicing)
# Sum projection over axis 0 and plot
a = axes[row,
col].imshow(field[slicing].sum(axis=project_axis) + 1,
cmap='magma',
extent=[0, field.shape[1], 0, field.shape[2]],
vmin=vmin,
vmax=vmax)
axes[row, col].set_xlabel('Mpc/h')
axes[row, col].set_ylabel('Mpc/h')
axes[row, col].set_title(f"{name} projection 0")
if colorbar:
fig.colorbar(a, ax=axes[row, col], shrink=0.7)
# Remove any empty subplots
for j in range(i + 1, nb_rows * nb_cols):
fig.delaxes(axes.flatten()[j])
plt.tight_layout()
plt.show()
def stack_slices(array):
"""
Stacks 2D slices of an array into a single array based on provided partition dimensions.
Args:
- array_slices: a 2D list of array slices (list of lists format) where
array_slices[i][j] is the slice located at row i, column j in the grid.
- pdims: a tuple representing the grid dimensions (rows, columns).
Returns:
- A single array constructed by stacking the slices.
"""
# Initialize an empty list to store the vertically stacked rows
pdims = array.sharding.mesh.devices.shape
field_slices = []
# Iterate over rows in pdims[0]
for i in range(pdims[0]):
row_slices = []
# Iterate over columns in pdims[1]
for j in range(pdims[1]):
slice_index = i * pdims[0] + j
row_slices.append(array.addressable_data(slice_index))
# Stack the current row of slices vertically
stacked_row = np.hstack(row_slices)
field_slices.append(stacked_row)
# Stack all rows horizontally to form the full array
full_array = np.vstack(field_slices)
return full_array

View file

@ -1,268 +1,96 @@
import jax
import jax.numpy as jnp
import jax_cosmo as jc
from jaxpm.distributed import fft3d, ifft3d, normal_field
from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second,
growth_rate, growth_rate_second)
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel,
invlaplace_kernel, longrange_kernel)
from jaxpm.painting import cic_paint, cic_paint_dx, cic_read, cic_read_dx
from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel, PGD_kernel
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions,
mesh_shape=None,
delta=None,
r_split=0,
paint_absolute_pos=True,
halo_size=0,
sharding=None):
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
"""
Computes gravitational forces on particles using a PM scheme
"""
if mesh_shape is None:
assert (delta is not None),\
"If mesh_shape is not provided, delta should be provided"
mesh_shape = delta.shape
if paint_absolute_pos:
paint_fn = lambda pos: cic_paint(jnp.zeros(shape=mesh_shape,
device=sharding),
pos,
halo_size=halo_size,
sharding=sharding)
read_fn = lambda grid_mesh, pos: cic_read(
grid_mesh, pos, halo_size=halo_size, sharding=sharding)
else:
paint_fn = lambda disp: cic_paint_dx(
disp, halo_size=halo_size, sharding=sharding)
read_fn = lambda grid_mesh, disp: cic_read_dx(
grid_mesh, disp, halo_size=halo_size, sharding=sharding)
kvec = fftk(mesh_shape)
if delta is None:
field = paint_fn(positions)
delta_k = fft3d(field)
elif jnp.isrealobj(delta):
delta_k = fft3d(delta)
delta_k = jnp.fft.rfftn(cic_paint(jnp.zeros(mesh_shape), positions))
else:
delta_k = delta
delta_k = jnp.fft.rfftn(delta)
kvec = fftk(delta_k)
# Computes gravitational potential
pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel(
kvec, r_split=r_split)
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split)
# Computes gravitational forces
forces = jnp.stack([
read_fn(ifft3d(-gradient_kernel(kvec, i) * pot_k),positions
) for i in range(3)], axis=-1) # yapf: disable
return forces
return jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), positions)
for i in range(3)],axis=-1)
def lpt(cosmo,
initial_conditions,
particles=None,
a=0.1,
halo_size=0,
sharding=None,
order=1):
def lpt(cosmo, initial_conditions, positions, a):
"""
Computes first and second order LPT displacement and momentum,
e.g. Eq. 2 and 3 [Jenkins2010](https://arxiv.org/pdf/0910.0258)
Computes first order LPT displacement
"""
paint_absolute_pos = particles is not None
if particles is None:
particles = jnp.zeros_like(initial_conditions,
shape=(*initial_conditions.shape, 3))
initial_force = pm_forces(positions, delta=initial_conditions)
a = jnp.atleast_1d(a)
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
delta_k = fft3d(initial_conditions)
initial_force = pm_forces(particles,
delta=delta_k,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * E * dx
f = a**2 * E * dGfa(cosmo, a) * initial_force
if order == 2:
kvec = fftk(delta_k)
pot_k = delta_k * invlaplace_kernel(kvec)
delta2 = 0
shear_acc = 0
# for i, ki in enumerate(kvec):
for i in range(3):
# Add products of diagonal terms = 0 + s11*s00 + s22*(s11+s00)...
# shear_ii = jnp.fft.irfftn(- ki**2 * pot_k)
nabla_i_nabla_i = gradient_kernel(kvec, i)**2
shear_ii = ifft3d(nabla_i_nabla_i * pot_k)
delta2 += shear_ii * shear_acc
shear_acc += shear_ii
# for kj in kvec[i+1:]:
for j in range(i + 1, 3):
# Substract squared strict-up-triangle terms
# delta2 -= jnp.fft.irfftn(- ki * kj * pot_k)**2
nabla_i_nabla_j = gradient_kernel(kvec, i) * gradient_kernel(
kvec, j)
delta2 -= ifft3d(nabla_i_nabla_j * pot_k)**2
delta_k2 = fft3d(delta2)
init_force2 = pm_forces(particles,
delta=delta_k2,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding)
# NOTE: growth_factor_second is renormalized: - D2 = 3/7 * growth_factor_second
dx2 = 3 / 7 * growth_factor_second(cosmo, a) * init_force2
p2 = a**2 * growth_rate_second(cosmo, a) * E * dx2
f2 = a**2 * E * dGf2a(cosmo, a) * init_force2
dx += dx2
p += p2
f += f2
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
return dx, p, f
def linear_field(mesh_shape, box_size, pk, seed, sharding=None):
def linear_field(mesh_shape, box_size, pk, seed):
"""
Generate initial conditions.
"""
# Initialize a random field with one slice on each gpu
field = normal_field(mesh_shape, seed=seed, sharding=sharding)
field = fft3d(field)
kvec = fftk(field)
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2
for i, kk in enumerate(kvec))**0.5
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (
box_size[0] * box_size[1] * box_size[2])
kvec = fftk(mesh_shape)
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2])
field = field * (pkmesh)**0.5
field = ifft3d(field)
field = jax.random.normal(seed, mesh_shape)
field = jnp.fft.rfftn(field) * pkmesh**0.5
field = jnp.fft.irfftn(field)
return field
def make_ode_fn(mesh_shape,
paint_absolute_pos=True,
halo_size=0,
sharding=None):
def make_ode_fn(mesh_shape):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos,
mesh_shape=mesh_shape,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding) * 1.5 * cosmo.Omega_m
forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return nbody_ode
def make_diffrax_ode(cosmo,
mesh_shape,
paint_absolute_pos=True,
halo_size=0,
sharding=None):
def nbody_ode(a, state, args):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
forces = pm_forces(pos,
mesh_shape=mesh_shape,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding) * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return jnp.stack([dpos, dvel])
return nbody_ode
def pgd_correction(pos, mesh_shape, params):
def pgd_correction(pos, params):
"""
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method,
based on https://arxiv.org/abs/1804.00671
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671
args:
pos: particle positions [npart, 3]
params: [alpha, kl, ks] pgd parameters
"""
kvec = fftk(mesh_shape)
delta = cic_paint(jnp.zeros(mesh_shape), pos)
delta_k = fft3d(delta)
kvec = fftk(delta_k)
alpha, kl, ks = params
PGD_range = PGD_kernel(kvec, kl, ks)
delta_k = jnp.fft.rfftn(delta)
PGD_range=PGD_kernel(kvec, kl, ks)
pot_k_pgd=(delta_k * laplace_kernel(kvec))*PGD_range
pot_k_pgd = (delta_k * invlaplace_kernel(kvec)) * PGD_range
forces_pgd = jnp.stack([
cic_read(fft3d(-gradient_kernel(kvec, i) * pot_k_pgd), pos)
for i in range(3)
],
axis=-1)
dpos_pgd = forces_pgd * alpha
return dpos_pgd
def make_neural_ode_fn(model, mesh_shape):
def neural_nbody_ode(state, a, cosmo: Cosmology, params):
"""
state is a tuple (position, velocities)
"""
pos, vel = state
delta = cic_paint(jnp.zeros(mesh_shape), pos)
delta_k = fft3d(delta)
kvec = fftk(delta_k)
# Computes gravitational potential
pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel(kvec,
r_split=0)
# Apply a correction filter
kk = jnp.sqrt(sum((ki / jnp.pi)**2 for ki in kvec))
pot_k = pot_k * (1. + model.apply(params, kk, jnp.atleast_1d(a)))
# Computes gravitational forces
forces = jnp.stack([
cic_read(fft3d(-gradient_kernel(kvec, i) * pot_k), pos)
for i in range(3)
],
axis=-1)
forces = forces * 1.5 * cosmo.Omega_m
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return neural_nbody_ode
forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k_pgd), pos)
for i in range(3)],axis=-1)
dpos_pgd = forces_pgd*alpha
return dpos_pgd

View file

@ -1,222 +1,99 @@
from functools import partial
import jax.numpy as jnp
import numpy as np
import jax.numpy as jnp
from jax.scipy.stats import norm
from scipy.special import legendre
__all__ = [
'power_spectrum', 'transfer', 'coherence', 'pktranscoh',
'cross_correlation_coefficients', 'gaussian_smoothing'
]
__all__ = ['power_spectrum']
def _initialize_pk(mesh_shape, box_shape, kedges, los):
def _initialize_pk(shape, boxsize, kmin, dk):
"""
Helper function to initialize various (fixed) values for powerspectra... not differentiable!
"""
Parameters
----------
mesh_shape : tuple of int
Shape of the mesh grid.
box_shape : tuple of float
Physical dimensions of the box.
kedges : None, int, float, or list
If None, set dk to twice the minimum.
If int, specifies number of edges.
If float, specifies dk.
los : array_like
Line-of-sight vector.
I = np.eye(len(shape), dtype='int') * -2 + 1
Returns
-------
dig : ndarray
Indices of the bins to which each value in input array belongs.
kcount : ndarray
Count of values in each bin.
kedges : ndarray
Edges of the bins.
mumesh : ndarray
Mu values for the mesh grid.
"""
kmax = np.pi * np.min(mesh_shape / box_shape) # = knyquist
W = np.empty(shape, dtype='f4')
W[...] = 2.0
W[..., 0] = 1.0
W[..., -1] = 1.0
if isinstance(kedges, None | int | float):
if kedges is None:
dk = 2 * np.pi / np.min(
box_shape) * 2 # twice the minimum wavenumber
if isinstance(kedges, int):
dk = kmax / (kedges + 1) # final number of bins will be kedges-1
elif isinstance(kedges, float):
dk = kedges
kedges = np.arange(dk, kmax, dk) + dk / 2 # from dk/2 to kmax-dk/2
kmax = np.pi * np.min(np.array(shape)) / np.max(np.array(boxsize)) + dk / 2
kedges = np.arange(kmin, kmax, dk)
kshapes = np.eye(len(mesh_shape), dtype=np.int32) * -2 + 1
kvec = [(2 * np.pi * m / l) * np.fft.fftfreq(m).reshape(kshape)
for m, l, kshape in zip(mesh_shape, box_shape, kshapes)]
kmesh = sum(ki**2 for ki in kvec)**0.5
k = [
np.fft.fftfreq(N, 1. / (N * 2 * np.pi / L))[:pkshape].reshape(kshape)
for N, L, kshape, pkshape in zip(shape, boxsize, I, shape)
]
kmag = sum(ki**2 for ki in k)**0.5
dig = np.digitize(kmesh.reshape(-1), kedges)
kcount = np.bincount(dig, minlength=len(kedges) + 1)
xsum = np.zeros(len(kedges) + 1)
Nsum = np.zeros(len(kedges) + 1)
# Central value of each bin
# kavg = (kedges[1:] + kedges[:-1]) / 2
kavg = np.bincount(
dig, weights=kmesh.reshape(-1), minlength=len(kedges) + 1) / kcount
kavg = kavg[1:-1]
dig = np.digitize(kmag.flat, kedges)
if los is None:
mumesh = 1.
else:
mumesh = sum(ki * losi for ki, losi in zip(kvec, los))
kmesh_nozeros = np.where(kmesh == 0, 1, kmesh)
mumesh = np.where(kmesh == 0, 0, mumesh / kmesh_nozeros)
return dig, kcount, kavg, mumesh
xsum.flat += np.bincount(dig, weights=(W * kmag).flat, minlength=xsum.size)
Nsum.flat += np.bincount(dig, weights=W.flat, minlength=xsum.size)
return dig, Nsum, xsum, W, k, kedges
def power_spectrum(mesh,
mesh2=None,
box_shape=None,
kedges: int | float | list = None,
multipoles=0,
los=[0., 0., 1.]):
"""
Compute the auto and cross spectrum of 3D fields, with multipoles.
"""
# Initialize
mesh_shape = np.array(mesh.shape)
if box_shape is None:
box_shape = mesh_shape
else:
box_shape = np.asarray(box_shape)
if multipoles == 0:
los = None
else:
los = np.asarray(los)
los = los / np.linalg.norm(los)
poles = np.atleast_1d(multipoles)
dig, kcount, kavg, mumesh = _initialize_pk(mesh_shape, box_shape, kedges,
los)
n_bins = len(kavg) + 2
# FFTs
meshk = jnp.fft.fftn(mesh, norm='ortho')
if mesh2 is None:
mmk = meshk.real**2 + meshk.imag**2
else:
mmk = meshk * jnp.fft.fftn(mesh2, norm='ortho').conj()
# Sum powers
pk = jnp.empty((len(poles), n_bins))
for i_ell, ell in enumerate(poles):
weights = (mmk * (2 * ell + 1) * legendre(ell)(mumesh)).reshape(-1)
if mesh2 is None:
psum = jnp.bincount(dig, weights=weights, length=n_bins)
else: # XXX: bincount is really slow with complex numbers
psum_real = jnp.bincount(dig, weights=weights.real, length=n_bins)
psum_imag = jnp.bincount(dig, weights=weights.imag, length=n_bins)
psum = (psum_real**2 + psum_imag**2)**.5
pk = pk.at[i_ell].set(psum)
# Normalization and conversion from cell units to [Mpc/h]^3
pk = (pk / kcount)[:, 1:-1] * (box_shape / mesh_shape).prod()
# pk = jnp.concatenate([kavg[None], pk])
if np.ndim(multipoles) == 0:
return kavg, pk[0]
else:
return kavg, pk
def transfer(mesh0, mesh1, box_shape, kedges: int | float | list = None):
pk_fn = partial(power_spectrum, box_shape=box_shape, kedges=kedges)
ks, pk0 = pk_fn(mesh0)
ks, pk1 = pk_fn(mesh1)
return ks, (pk1 / pk0)**.5
def coherence(mesh0, mesh1, box_shape, kedges: int | float | list = None):
pk_fn = partial(power_spectrum, box_shape=box_shape, kedges=kedges)
ks, pk01 = pk_fn(mesh0, mesh1)
ks, pk0 = pk_fn(mesh0)
ks, pk1 = pk_fn(mesh1)
return ks, pk01 / (pk0 * pk1)**.5
def pktranscoh(mesh0, mesh1, box_shape, kedges: int | float | list = None):
pk_fn = partial(power_spectrum, box_shape=box_shape, kedges=kedges)
ks, pk01 = pk_fn(mesh0, mesh1)
ks, pk0 = pk_fn(mesh0)
ks, pk1 = pk_fn(mesh1)
return ks, pk0, pk1, (pk1 / pk0)**.5, pk01 / (pk0 * pk1)**.5
def cross_correlation_coefficients(field_a,
field_b,
kmin=5,
dk=0.5,
boxsize=False):
"""
Calculate the cross correlation coefficients given two real space field
def power_spectrum(field, kmin=5, dk=0.5, boxsize=False):
"""
Calculate the powerspectra given real space field
Args:
field_a: real valued field
field_b: real valued field
field: real valued field
kmin: minimum k-value for binned powerspectra
dk: differential in each kbin
boxsize: length of each boxlength (can be strangly shaped?)
Returns:
kbins: the central value of the bins for plotting
P / norm: normalized cross correlation coefficient between two field a and b
power: real valued array of power in each bin
"""
shape = field_a.shape
nx, ny, nz = shape
shape = field.shape
nx, ny, nz = shape
#initialze values related to powerspectra (mode bins and weights)
dig, Nsum, xsum, W, k, kedges = _initialize_pk(shape, boxsize, kmin, dk)
#initialze values related to powerspectra (mode bins and weights)
dig, Nsum, xsum, W, k, kedges = _initialize_pk(shape, boxsize, kmin, dk)
#fast fourier transform
fft_image_a = jnp.fft.fftn(field_a)
fft_image_b = jnp.fft.fftn(field_b)
#fast fourier transform
fft_image = jnp.fft.fftn(field)
#absolute value of fast fourier transform
pk = fft_image_a * jnp.conj(fft_image_b)
#absolute value of fast fourier transform
pk = jnp.real(fft_image * jnp.conj(fft_image))
#calculating powerspectra
real = jnp.real(pk).reshape([-1])
imag = jnp.imag(pk).reshape([-1])
Psum = jnp.bincount(dig, weights=(W.flatten() * imag),
length=xsum.size) * 1j
Psum += jnp.bincount(dig, weights=(W.flatten() * real), length=xsum.size)
#calculating powerspectra
real = jnp.real(pk).reshape([-1])
imag = jnp.imag(pk).reshape([-1])
P = ((Psum / Nsum)[1:-1] * boxsize.prod()).astype('float32')
Psum = jnp.bincount(dig, weights=(W.flatten() * imag), length=xsum.size) * 1j
Psum += jnp.bincount(dig, weights=(W.flatten() * real), length=xsum.size)
#normalization for powerspectra
norm = np.prod(np.array(shape[:])).astype('float32')**2
P = ((Psum / Nsum)[1:-1] * boxsize.prod()).astype('float32')
#find central values of each bin
kbins = kedges[:-1] + (kedges[1:] - kedges[:-1]) / 2
#normalization for powerspectra
norm = np.prod(np.array(shape[:])).astype('float32')**2
return kbins, P / norm
#find central values of each bin
kbins = kedges[:-1] + (kedges[1:] - kedges[:-1]) / 2
return kbins, P / norm
def gaussian_smoothing(im, sigma):
"""
im: 2d image
sigma: smoothing scale in px
"""
# Compute k vector
kvec = jnp.stack(jnp.meshgrid(jnp.fft.fftfreq(im.shape[0]),
jnp.fft.fftfreq(im.shape[1])),
axis=-1)
k = jnp.linalg.norm(kvec, axis=-1)
# We compute the value of the filter at frequency k
filter = norm.pdf(k, 0, 1. / (2. * np.pi * sigma))
filter /= filter[0, 0]
im: 2d image
sigma: smoothing scale in px
"""
# Compute k vector
kvec = jnp.stack(jnp.meshgrid(jnp.fft.fftfreq(im.shape[0]),
jnp.fft.fftfreq(im.shape[1])),
axis=-1)
k = jnp.linalg.norm(kvec, axis=-1)
# We compute the value of the filter at frequency k
filter = norm.pdf(k, 0, 1. / (2. * np.pi * sigma))
filter /= filter[0,0]
return jnp.fft.ifft2(jnp.fft.fft2(im) * filter).real
return jnp.fft.ifft2(jnp.fft.fft2(im) * filter).real

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View file

@ -1,179 +0,0 @@
import os
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
import jax
jax.distributed.initialize()
rank = jax.process_index()
size = jax.process_count()
if rank == 0:
print(f"SIZE is {jax.device_count()}")
import argparse
from functools import partial
import jax.numpy as jnp
import jax_cosmo as jc
import numpy as np
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
PIDController, SaveAt, diffeqsolve)
from jax.experimental.mesh_utils import create_device_mesh
from jax.experimental.multihost_utils import process_allgather
from jax.sharding import Mesh, NamedSharding
from jax.sharding import PartitionSpec as P
from jaxpm.kernels import interpolate_power_spectrum
from jaxpm.painting import cic_paint_dx
from jaxpm.pm import linear_field, lpt, make_diffrax_ode
all_gather = partial(process_allgather, tiled=True)
def parse_arguments():
parser = argparse.ArgumentParser(
description="Run a cosmological simulation with JAX.")
parser.add_argument(
"-p",
"--pdims",
type=int,
nargs=2,
default=[1, jax.devices()],
help="Processor grid dimensions as two integers (e.g., 2 4).")
parser.add_argument(
"-m",
"--mesh_shape",
type=int,
nargs=3,
default=[512, 512, 512],
help="Shape of the simulation mesh as three values (e.g., 512 512 512)."
)
parser.add_argument(
"-b",
"--box_size",
type=float,
nargs=3,
default=[500.0, 500.0, 500.0],
help=
"Box size of the simulation as three values (e.g., 500.0 500.0 1000.0)."
)
parser.add_argument(
"-st",
"--snapshots",
type=int,
default=2,
help="Number of snapshots to save during the simulation.")
parser.add_argument("-H",
"--halo_size",
type=int,
default=64,
help="Halo size for the simulation.")
parser.add_argument("-s",
"--solver",
type=str,
choices=['leapfrog', 'dopri8'],
default='leapfrog',
help="ODE solver choice: 'leapfrog' or 'dopri8'.")
return parser.parse_args()
def create_mesh_and_sharding(pdims):
devices = create_device_mesh(pdims)
mesh = Mesh(devices, axis_names=('x', 'y'))
sharding = NamedSharding(mesh, P('x', 'y'))
return mesh, sharding
@partial(jax.jit, static_argnums=(2, 3, 4, 5, 6))
def run_simulation(omega_c, sigma8, mesh_shape, box_size, halo_size,
solver_choice, nb_snapshots, sharding):
k = jnp.logspace(-4, 1, 128)
pk = jc.power.linear_matter_power(
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk, sharding)
initial_conditions = linear_field(mesh_shape,
box_size,
pk_fn,
seed=jax.random.PRNGKey(0),
sharding=sharding)
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
dx, p, _ = lpt(cosmo,
initial_conditions,
a=0.1,
halo_size=halo_size,
sharding=sharding)
ode_fn = ODETerm(
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
# Choose solver
solver = LeapfrogMidpoint() if solver_choice == "leapfrog" else Dopri5()
stepsize_controller = ConstantStepSize(
) if solver_choice == "leapfrog" else PIDController(rtol=1e-5, atol=1e-5)
res = diffeqsolve(ode_fn,
solver,
t0=0.1,
t1=1.,
dt0=0.01,
y0=jnp.stack([dx, p], axis=0),
args=cosmo,
saveat=SaveAt(ts=jnp.linspace(0.2, 1., nb_snapshots)),
stepsize_controller=stepsize_controller)
ode_fields = [
cic_paint_dx(sol[0], halo_size=halo_size, sharding=sharding)
for sol in res.ys
]
lpt_field = cic_paint_dx(dx, halo_size=halo_size, sharding=sharding)
return initial_conditions, lpt_field, ode_fields, res.stats
def main():
args = parse_arguments()
mesh_shape = args.mesh_shape
box_size = args.box_size
halo_size = args.halo_size
solver_choice = args.solver
nb_snapshots = args.snapshots
sharding = create_mesh_and_sharding(args.pdims)
initial_conditions, lpt_displacements, ode_solutions, solver_stats = run_simulation(
0.25, 0.8, tuple(mesh_shape), tuple(box_size), halo_size,
solver_choice, nb_snapshots, sharding)
if rank == 0:
os.makedirs("fields", exist_ok=True)
print(f"[{rank}] Simulation done")
print(f"Solver stats: {solver_stats}")
# Save initial conditions
initial_conditions_g = all_gather(initial_conditions)
if rank == 0:
print(f"[{rank}] Saving initial_conditions")
np.save("fields/initial_conditions.npy", initial_conditions_g)
print(f"[{rank}] initial_conditions saved")
del initial_conditions_g, initial_conditions
# Save LPT displacements
lpt_displacements_g = all_gather(lpt_displacements)
if rank == 0:
print(f"[{rank}] Saving lpt_displacements")
np.save("fields/lpt_displacements.npy", lpt_displacements_g)
print(f"[{rank}] lpt_displacements saved")
del lpt_displacements_g, lpt_displacements
# Save each ODE solution separately
for i, sol in enumerate(ode_solutions):
sol_g = all_gather(sol)
if rank == 0:
print(f"[{rank}] Saving ode_solution_{i}")
np.save(f"fields/ode_solution_{i}.npy", sol_g)
print(f"[{rank}] ode_solution_{i} saved")
del sol_g
if __name__ == "__main__":
main()

View file

@ -1,320 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# **Animating Particle Mesh density fields**\n",
"\n",
"In this tutorial, we will animate the density field of a particle mesh simulation. We will use the `manim` library to create the animation. \n",
"\n",
"The density fields are created exactly like in the notebook [**05-MultiHost_PM.ipynb**](05-MultiHost_PM.ipynb) using the same script [**05-MultiHost_PM.py**](05-MultiHost_PM.py)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To run a multi-host simulation, you first need to **allocate a job** with `salloc`. This command requests resources on an HPC cluster.\n",
"\n",
"just like in notebook [**05-MultiHost_PM.ipynb**]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!salloc --account=XXX@a100 -C a100 --gres=gpu:8 --ntasks-per-node=8 --time=00:40:00 --cpus-per-task=8 --hint=nomultithread --qos=qos_gpu-dev --nodes=4 & "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**A few hours later**\n",
"\n",
"Use `!squeue -u $USER -o \"%i %D %b\"` to **check the JOB ID** and verify your resource allocation.\n",
"\n",
"In this example, weve been allocated **32 GPUs split across 4 nodes**.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!squeue -u $USER -o \"%i %D %b\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Unset the following environment variables, as they can cause issues when using JAX in a distributed setting:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"del os.environ['VSCODE_PROXY_URI']\n",
"del os.environ['NO_PROXY']\n",
"del os.environ['no_proxy']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Checking Available Compute Resources\n",
"\n",
"Run the following command to initialize JAX distributed computing and display the devices available for this job:\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!srun --jobid=467745 -n 32 python -c \"import jax; jax.distributed.initialize(); print(jax.devices()) if jax.process_index() == 0 else None\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Multi-Host Simulation Script with Arguments (reminder)\n",
"\n",
"This script is nearly identical to the single-host version, with the main addition being the call to `jax.distributed.initialize()` at the start, enabling multi-host parallelism. Heres a breakdown of the key arguments:\n",
"\n",
"- **`--pdims`** (`-p`): Specifies processor grid dimensions as two integers, like `16 2` for 16 x 2 device mesh (default is `[1, jax.devices()]`).\n",
"- **`--mesh_shape`** (`-m`): Defines the simulation mesh shape as three integers (default is `[512, 512, 512]`).\n",
"- **`--box_size`** (`-b`): Sets the physical box size of the simulation as three floating-point values, e.g., `1000. 1000. 1000.` (default is `[500.0, 500.0, 500.0]`).\n",
"- **`--halo_size`** (`-H`): Specifies the halo size for boundary overlap across nodes (default is `64`).\n",
"- **`--solver`** (`-s`): Chooses the ODE solver (`leapfrog` or `dopri8`). The `leapfrog` solver uses a fixed step size, while `dopri8` is an adaptive Runge-Kutta solver with a PID controller (default is `leapfrog`).\n",
"- **`--snapthots`** (`-st`) : Number of snapshots to save (warning, increases memory usage)\n",
"\n",
"### Running the Multi-Host Simulation Script\n",
"\n",
"To create a smooth animation, we need a series of closely spaced snapshots to capture the evolution of the density field over time. In this example, we set the number of snapshots to **10** to ensure smooth transitions in the animation.\n",
"\n",
"Using a larger number of GPUs helps process these snapshots efficiently, especially with a large simulation mesh or high-resolution data. This allows us to achieve both the desired snapshot frequency and the necessary simulation detail without excessive runtime.\n",
"\n",
"The command to run the multi-host simulation with these settings will look something like this:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"\n",
"# Define parameters as variables\n",
"jobid = \"467745\"\n",
"num_processes = 32\n",
"script_name = \"05-MultiHost_PM.py\"\n",
"mesh_shape = (1024, 1024, 1024)\n",
"box_size = (1000., 1000., 1000.)\n",
"halo_size = 128\n",
"solver = \"leapfrog\"\n",
"pdims = (16, 2)\n",
"snapshots = 8\n",
"\n",
"# Build the command as a list, incorporating variables\n",
"command = [\n",
" \"srun\",\n",
" f\"--jobid={jobid}\",\n",
" \"-n\", str(num_processes),\n",
" \"python\", script_name,\n",
" \"--mesh_shape\", str(mesh_shape[0]), str(mesh_shape[1]), str(mesh_shape[2]),\n",
" \"--box_size\", str(box_size[0]), str(box_size[1]), str(box_size[2]),\n",
" \"--halo_size\", str(halo_size),\n",
" \"-s\", solver,\n",
" \"--pdims\", str(pdims[0]), str(pdims[1]),\n",
" \"--snapshots\", str(snapshots)\n",
"]\n",
"\n",
"# Execute the command as a subprocess\n",
"subprocess.run(command)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Projecting the 3D Density Fields to 2D\n",
"\n",
"To visualize the 3D density fields in 2D, we need to create a projection:\n",
"\n",
"- **`project_to_2d` Function**: This function reduces the 3D array to 2D by summing over a portion of one axis.\n",
" - We sum the top one-eighth of the data along the first axis to capture a slice of the density field.\n",
"\n",
"- **Creating 2D Projections**: Apply `project_to_2d` to each 3D field (`initial_conditions`, `lpt_displacements`, `ode_solution_0`, and `ode_solution_1`) to get 2D arrays that represent the density fields.\n",
"\n",
"### Applying the Magma Colormap\n",
"\n",
"To improve visualization, apply the \"magma\" colormap to each 2D projection:\n",
"\n",
"- **`apply_colormap` Function**: This function maps values in the 2D array to colors using the \"magma\" colormap.\n",
" - First, normalize the array to the `[0, 1]` range.\n",
" - Apply the colormap to create RGB images, which will be used for the animation.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import colormaps\n",
"\n",
"# Define a function to project the 3D field to 2D\n",
"def project_to_2d(field):\n",
" sum_over = field.shape[0] // 8\n",
" slicing = [slice(None)] * field.ndim\n",
" slicing[0] = slice(None, sum_over)\n",
" slicing = tuple(slicing)\n",
"\n",
" return field[slicing].sum(axis=0)\n",
"\n",
"\n",
"def apply_colormap(array, cmap_name=\"magma\"):\n",
" cmap = colormaps[cmap_name]\n",
" normalized_array = (array - array.min()) / (array.max() - array.min())\n",
" colored_image = cmap(normalized_array)[:, :, :3] # Drop alpha channel for RGB\n",
" return (colored_image * 255).astype(np.uint8)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Loading and Visualizing Results\n",
"\n",
"After running the multi-host simulation, we load the saved results from disk:\n",
"\n",
"- **`initial_conditions.npy`**: Initial conditions for the simulation.\n",
"- **`lpt_displacements.npy`**: Linear perturbation displacements.\n",
"- **`ode_solution_*.npy`** : Solutions from the ODE solver at each snapshot.\n",
"\n",
"We will now project the fields to 2D maps and apply the color map\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"initial_conditions = apply_colormap(project_to_2d(np.load('fields/initial_conditions.npy')))\n",
"lpt_displacements = apply_colormap(project_to_2d(np.load('fields/lpt_displacements.npy')))\n",
"ode_solutions = []\n",
"for i in range(8):\n",
" ode_solutions.append(apply_colormap(project_to_2d(np.load(f'fields/ode_solution_{i}.npy'))))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Animating with Manim\n",
"\n",
"To create animations with `manim` in a Jupyter notebook, we start by configuring some settings to ensure the output displays correctly and without a background.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"from manim import *\n",
"config.media_width = \"100%\"\n",
"config.verbosity = \"WARNING\"\n",
"config.background_color = \"#00000000\" # Transparent background"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Defining the Animation in Manim\n",
"\n",
"This animation class, `FieldTransition`, smoothly transitions through the stages of the particle mesh density field evolution.\n",
"\n",
"- **Setup**: Each density field snapshot is loaded as an image and aligned for smooth transitions.\n",
"- **Animation Sequence**:\n",
" - The animation begins with a fade-in of the initial conditions.\n",
" - It then transitions through the stages in sequence, showing each snapshot of the density field evolution with brief pauses in between.\n",
"\n",
"To run the animation, execute `%manim -v WARNING -qm FieldTransition` to render it in the Jupyter Notebook.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Define the animation in Manim\n",
"class FieldTransition(Scene):\n",
" def construct(self):\n",
" init_conditions_img = ImageMobject(initial_conditions).scale(4)\n",
" lpt_img = ImageMobject(lpt_displacements).scale(4)\n",
" snapshots_imgs = [ImageMobject(sol).scale(4) for sol in ode_solutions]\n",
"\n",
"\n",
" # Place the images on top of each other initially\n",
" lpt_img.move_to(init_conditions_img)\n",
" for img in snapshots_imgs:\n",
" img.move_to(init_conditions_img)\n",
"\n",
" # Show initial field and then transform between fields\n",
" self.play(FadeIn(init_conditions_img))\n",
" self.wait(0.2)\n",
" self.play(Transform(init_conditions_img, lpt_img))\n",
" self.wait(0.2)\n",
" self.play(Transform(lpt_img, snapshots_imgs[0]))\n",
" self.wait(0.2)\n",
" for img1, img2 in zip(snapshots_imgs, snapshots_imgs[1:]):\n",
" self.play(Transform(img1, img2))\n",
" self.wait(0.2)\n",
"\n",
"%manim -v WARNING -qm -o anim.gif --format=gif FieldTransition "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View file

@ -1,39 +0,0 @@
# Particle Mesh Simulation with JAXPM on Multi-GPU and Multi-Host Systems
This collection of notebooks demonstrates how to perform Particle Mesh (PM) simulations using **JAXPM**, leveraging JAX for efficient computation on multi-GPU and multi-host systems. Each notebook progressively covers different setups, from single-GPU simulations to advanced, distributed, multi-host simulations across multiple nodes.
## Table of Contents
1. **[Single-GPU Particle Mesh Simulation](01-Introduction.ipynb)**
- Introduction to basic PM simulations on a single GPU.
- Uses JAXPM to run simulations with absolute particle positions and Cloud-in-Cell (CIC) painting.
2. **[Advanced Particle Mesh Simulation on a Single GPU](02-Advanced_usage.ipynb)**
- Explore using diffrax solvers in the ODE step.
- Explores second order Lagrangian Perturbation Theory (LPT) simulations.
- Introduces weighted density field projections
3. **[Multi-GPU Particle Mesh Simulation with Halo Exchange](03-MultiGPU_PM_Halo.ipynb)**
- Extends PM simulation to multi-GPU setups with halo exchange.
- Uses sharding and device mesh configurations to manage distributed data across GPUs.
4. **[Multi-GPU Particle Mesh Simulation with Advanced Solvers](04-MultiGPU_PM_Solvers.ipynb)**
- Compares different ODE solvers (Leapfrog and Dopri5) in multi-GPU simulations.
- Highlights performance, memory considerations, and solver impact on simulation quality.
5. **[Multi-Host Particle Mesh Simulation](05-MultiHost_PM.ipynb)**
- Extends PM simulations to multi-host, multi-GPU setups for large-scale simulations.
- Guides through job submission, device initialization, and retrieving results across nodes.
## Getting Started
Each notebook includes installation instructions and guidelines for configuring JAXPM and required dependencies. Follow the setup instructions in each notebook to ensure an optimal environment.
## Requirements
- **JAXPM** (included in the installation commands within notebooks)
- **Diffrax** for ODE solvers
- **JAX** with CUDA support for multi-GPU or TPU setups
- **SLURM** for job scheduling on clusters (if running multi-host setups)
> **Note**: These notebooks are tested on the **Jean Zay** supercomputer and may require configuration changes for different HPC clusters.

View file

@ -1,20 +0,0 @@
[build-system]
requires = ["setuptools", "wheel", "setuptools-scm"]
build-backend = "setuptools.build_meta"
[project]
name = "jaxpm"
dynamic = ["version"]
description = "A simple Particle-Mesh implementation in JAX"
authors = [{ name = "JaxPM developers" }]
readme = "README.md"
requires-python = ">=3.9"
license = { file = "LICENSE" }
urls = { "Homepage" = "https://github.com/DifferentiableUniverseInitiative/JaxPM" }
dependencies = ["jax_cosmo", "jax>=0.4.35", "jaxdecomp>=0.2.3"]
[tool.setuptools]
packages = ["jaxpm"]
[tool.setuptools_scm]
version_file = "jaxpm/_version.py"

View file

@ -1,4 +0,0 @@
[pytest]
markers =
distributed: mark a test as distributed
single_device: mark a test as single_device

View file

@ -1,5 +0,0 @@
pytest>=8.0.0
diffrax
pfft-python @ git+https://github.com/MP-Gadget/pfft-python
pmesh @ git+https://github.com/MP-Gadget/pmesh
fastpm @ git+https://github.com/ASKabalan/fastpm-python

11
setup.py Normal file
View file

@ -0,0 +1,11 @@
from setuptools import setup, find_packages
setup(
name='JaxPM',
version='0.0.1',
url='https://github.com/DifferentiableUniverseInitiative/JaxPM',
author='JaxPM developers',
description='A dead simple FastPM implementation in JAX',
packages=find_packages(),
install_requires=['jax', 'jax_cosmo'],
)

View file

@ -1,175 +0,0 @@
# Parameterized fixture for mesh_shape
import os
import pytest
os.environ["EQX_ON_ERROR"] = "nan"
setup_done = False
on_cluster = False
def is_on_cluster():
global on_cluster
return on_cluster
def initialize_distributed():
global setup_done
global on_cluster
if not setup_done:
if "SLURM_JOB_ID" in os.environ:
on_cluster = True
print("Running on cluster")
import jax
jax.distributed.initialize()
setup_done = True
on_cluster = True
else:
print("Running locally")
setup_done = True
on_cluster = False
os.environ["JAX_PLATFORM_NAME"] = "cpu"
os.environ[
"XLA_FLAGS"] = "--xla_force_host_platform_device_count=8"
import jax
@pytest.fixture(
scope="session",
params=[
((32, 32, 32), (256., 256., 256.)), # BOX
((32, 32, 64), (256., 256., 512.)), # RECTANGULAR
])
def simulation_config(request):
return request.param
@pytest.fixture(scope="session", params=[0.1, 0.5, 0.8])
def lpt_scale_factor(request):
return request.param
@pytest.fixture(scope="session")
def cosmo():
from functools import partial
from jax_cosmo import Cosmology
Planck18 = partial(
Cosmology,
# Omega_m = 0.3111
Omega_c=0.2607,
Omega_b=0.0490,
Omega_k=0.0,
h=0.6766,
n_s=0.9665,
sigma8=0.8102,
w0=-1.0,
wa=0.0,
)
return Planck18()
@pytest.fixture(scope="session")
def particle_mesh(simulation_config):
from pmesh.pm import ParticleMesh
mesh_shape, box_shape = simulation_config
return ParticleMesh(BoxSize=box_shape, Nmesh=mesh_shape, dtype='f4')
@pytest.fixture(scope="session")
def fpm_initial_conditions(cosmo, particle_mesh):
import jax_cosmo as jc
import numpy as np
from jax import numpy as jnp
# Generate initial particle positions
grid = particle_mesh.generate_uniform_particle_grid(shift=0).astype(
np.float32)
# Interpolate with linear_matter spectrum to get initial density field
k = jnp.logspace(-4, 1, 128)
pk = jc.power.linear_matter_power(cosmo, k)
def pk_fn(x):
return jnp.interp(x.reshape([-1]), k, pk).reshape(x.shape)
whitec = particle_mesh.generate_whitenoise(42,
type='complex',
unitary=False)
lineark = whitec.apply(lambda k, v: pk_fn(sum(ki**2 for ki in k)**0.5)**0.5
* v * (1 / v.BoxSize).prod()**0.5)
init_mesh = lineark.c2r().value # XXX
return lineark, grid, init_mesh
@pytest.fixture(scope="session")
def initial_conditions(fpm_initial_conditions):
_, _, init_mesh = fpm_initial_conditions
return init_mesh
@pytest.fixture(scope="session")
def solver(cosmo, particle_mesh):
from fastpm.core import Cosmology as FastPMCosmology
from fastpm.core import Solver
ref_cosmo = FastPMCosmology(cosmo)
return Solver(particle_mesh, ref_cosmo, B=1)
@pytest.fixture(scope="session")
def fpm_lpt1(solver, fpm_initial_conditions, lpt_scale_factor):
lineark, grid, _ = fpm_initial_conditions
statelpt = solver.lpt(lineark, grid, lpt_scale_factor, order=1)
return statelpt
@pytest.fixture(scope="session")
def fpm_lpt1_field(fpm_lpt1, particle_mesh):
return particle_mesh.paint(fpm_lpt1.X).value
@pytest.fixture(scope="session")
def fpm_lpt2(solver, fpm_initial_conditions, lpt_scale_factor):
lineark, grid, _ = fpm_initial_conditions
statelpt = solver.lpt(lineark, grid, lpt_scale_factor, order=2)
return statelpt
@pytest.fixture(scope="session")
def fpm_lpt2_field(fpm_lpt2, particle_mesh):
return particle_mesh.paint(fpm_lpt2.X).value
@pytest.fixture(scope="session")
def nbody_from_lpt1(solver, fpm_lpt1, particle_mesh, lpt_scale_factor):
import numpy as np
from fastpm.core import leapfrog
if lpt_scale_factor == 0.8:
pytest.skip("Do not run nbody simulation from scale factor 0.8")
stages = np.linspace(lpt_scale_factor, 1.0, 10, endpoint=True)
finalstate = solver.nbody(fpm_lpt1, leapfrog(stages))
fpm_mesh = particle_mesh.paint(finalstate.X).value
return fpm_mesh
@pytest.fixture(scope="session")
def nbody_from_lpt2(solver, fpm_lpt2, particle_mesh, lpt_scale_factor):
import numpy as np
from fastpm.core import leapfrog
if lpt_scale_factor == 0.8:
pytest.skip("Do not run nbody simulation from scale factor 0.8")
stages = np.linspace(lpt_scale_factor, 1.0, 10, endpoint=True)
finalstate = solver.nbody(fpm_lpt2, leapfrog(stages))
fpm_mesh = particle_mesh.paint(finalstate.X).value
return fpm_mesh

View file

@ -1,13 +0,0 @@
import jax.numpy as jnp
def MSE(x, y):
return jnp.mean((x - y)**2)
def MSE_3D(x, y):
return ((x - y)**2).mean(axis=0)
def MSRE(x, y):
return jnp.mean(((x - y) / y)**2)

View file

@ -1,155 +0,0 @@
import pytest
from diffrax import Dopri5, ODETerm, PIDController, SaveAt, diffeqsolve
from helpers import MSE, MSRE
from jax import numpy as jnp
from jaxpm.distributed import uniform_particles
from jaxpm.painting import cic_paint, cic_paint_dx
from jaxpm.pm import lpt, make_diffrax_ode
from jaxpm.utils import power_spectrum
_TOLERANCE = 1e-4
_PM_TOLERANCE = 1e-3
@pytest.mark.single_device
@pytest.mark.parametrize("order", [1, 2])
def test_lpt_absolute(simulation_config, initial_conditions, lpt_scale_factor,
fpm_lpt1_field, fpm_lpt2_field, cosmo, order):
mesh_shape, box_shape = simulation_config
cosmo._workspace = {}
particles = uniform_particles(mesh_shape)
# Initial displacement
dx, _, _ = lpt(cosmo,
initial_conditions,
particles,
a=lpt_scale_factor,
order=order)
fpm_ref_field = fpm_lpt1_field if order == 1 else fpm_lpt2_field
lpt_field = cic_paint(jnp.zeros(mesh_shape), particles + dx)
_, jpm_ps = power_spectrum(lpt_field, box_shape=box_shape)
_, fpm_ps = power_spectrum(fpm_ref_field, box_shape=box_shape)
assert MSE(lpt_field, fpm_ref_field) < _TOLERANCE
assert MSRE(jpm_ps, fpm_ps) < _TOLERANCE
@pytest.mark.single_device
@pytest.mark.parametrize("order", [1, 2])
def test_lpt_relative(simulation_config, initial_conditions, lpt_scale_factor,
fpm_lpt1_field, fpm_lpt2_field, cosmo, order):
mesh_shape, box_shape = simulation_config
cosmo._workspace = {}
# Initial displacement
dx, _, _ = lpt(cosmo, initial_conditions, a=lpt_scale_factor, order=order)
lpt_field = cic_paint_dx(dx)
fpm_ref_field = fpm_lpt1_field if order == 1 else fpm_lpt2_field
_, jpm_ps = power_spectrum(lpt_field, box_shape=box_shape)
_, fpm_ps = power_spectrum(fpm_ref_field, box_shape=box_shape)
assert MSE(lpt_field, fpm_ref_field) < _TOLERANCE
assert MSRE(jpm_ps, fpm_ps) < _TOLERANCE
@pytest.mark.single_device
@pytest.mark.parametrize("order", [1, 2])
def test_nbody_absolute(simulation_config, initial_conditions,
lpt_scale_factor, nbody_from_lpt1, nbody_from_lpt2,
cosmo, order):
mesh_shape, box_shape = simulation_config
cosmo._workspace = {}
particles = uniform_particles(mesh_shape)
# Initial displacement
dx, p, _ = lpt(cosmo,
initial_conditions,
particles,
a=lpt_scale_factor,
order=order)
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
solver = Dopri5()
controller = PIDController(rtol=1e-8,
atol=1e-8,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
y0 = jnp.stack([particles + dx, p])
solutions = diffeqsolve(ode_fn,
solver,
t0=lpt_scale_factor,
t1=1.0,
dt0=None,
y0=y0,
stepsize_controller=controller,
saveat=saveat)
final_field = cic_paint(jnp.zeros(mesh_shape), solutions.ys[-1, 0])
fpm_ref_field = nbody_from_lpt1 if order == 1 else nbody_from_lpt2
_, jpm_ps = power_spectrum(final_field, box_shape=box_shape)
_, fpm_ps = power_spectrum(fpm_ref_field, box_shape=box_shape)
assert MSE(final_field, fpm_ref_field) < _PM_TOLERANCE
assert MSRE(jpm_ps, fpm_ps) < _PM_TOLERANCE
@pytest.mark.single_device
@pytest.mark.parametrize("order", [1, 2])
def test_nbody_relative(simulation_config, initial_conditions,
lpt_scale_factor, nbody_from_lpt1, nbody_from_lpt2,
cosmo, order):
mesh_shape, box_shape = simulation_config
cosmo._workspace = {}
# Initial displacement
dx, p, _ = lpt(cosmo, initial_conditions, a=lpt_scale_factor, order=order)
ode_fn = ODETerm(
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
solver = Dopri5()
controller = PIDController(rtol=1e-9,
atol=1e-9,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
y0 = jnp.stack([dx, p])
solutions = diffeqsolve(ode_fn,
solver,
t0=lpt_scale_factor,
t1=1.0,
dt0=None,
y0=y0,
stepsize_controller=controller,
saveat=saveat)
final_field = cic_paint_dx(solutions.ys[-1, 0])
fpm_ref_field = nbody_from_lpt1 if order == 1 else nbody_from_lpt2
_, jpm_ps = power_spectrum(final_field, box_shape=box_shape)
_, fpm_ps = power_spectrum(fpm_ref_field, box_shape=box_shape)
assert MSE(final_field, fpm_ref_field) < _PM_TOLERANCE
assert MSRE(jpm_ps, fpm_ps) < _PM_TOLERANCE

View file

@ -1,152 +0,0 @@
from conftest import initialize_distributed
initialize_distributed() # ignore : E402
import jax # noqa : E402
import jax.numpy as jnp # noqa : E402
import pytest # noqa : E402
from diffrax import SaveAt # noqa : E402
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
from helpers import MSE # noqa : E402
from jax import lax # noqa : E402
from jax.experimental.multihost_utils import process_allgather # noqa : E402
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P # noqa : E402
from jaxpm.distributed import uniform_particles # noqa : E402
from jaxpm.painting import cic_paint, cic_paint_dx # noqa : E402
from jaxpm.pm import lpt, make_diffrax_ode # noqa : E402
_TOLERANCE = 3.0 # 🙃🙃
@pytest.mark.distributed
@pytest.mark.parametrize("order", [1, 2])
@pytest.mark.parametrize("absolute_painting", [True, False])
def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
absolute_painting):
mesh_shape, box_shape = simulation_config
# SINGLE DEVICE RUN
cosmo._workspace = {}
if absolute_painting:
particles = uniform_particles(mesh_shape)
# Initial displacement
dx, p, _ = lpt(cosmo,
initial_conditions,
particles,
a=0.1,
order=order)
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
y0 = jnp.stack([particles + dx, p])
else:
dx, p, _ = lpt(cosmo, initial_conditions, a=0.1, order=order)
ode_fn = ODETerm(
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
y0 = jnp.stack([dx, p])
solver = Dopri5()
controller = PIDController(rtol=1e-8,
atol=1e-8,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
solutions = diffeqsolve(ode_fn,
solver,
t0=0.1,
t1=1.0,
dt0=None,
y0=y0,
stepsize_controller=controller,
saveat=saveat)
if absolute_painting:
single_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
solutions.ys[-1, 0])
else:
single_device_final_field = cic_paint_dx(solutions.ys[-1, 0])
print("Done with single device run")
# MULTI DEVICE RUN
mesh = jax.make_mesh((1, 8), ('x', 'y'))
sharding = NamedSharding(mesh, P('x', 'y'))
halo_size = mesh_shape[0] // 2
initial_conditions = lax.with_sharding_constraint(initial_conditions,
sharding)
print(f"sharded initial conditions {initial_conditions.sharding}")
cosmo._workspace = {}
if absolute_painting:
particles = uniform_particles(mesh_shape, sharding=sharding)
# Initial displacement
dx, p, _ = lpt(cosmo,
initial_conditions,
particles,
a=0.1,
order=order,
halo_size=halo_size,
sharding=sharding)
ode_fn = ODETerm(
make_diffrax_ode(cosmo,
mesh_shape,
halo_size=halo_size,
sharding=sharding))
y0 = jnp.stack([particles + dx, p])
else:
dx, p, _ = lpt(cosmo,
initial_conditions,
a=0.1,
order=order,
halo_size=halo_size,
sharding=sharding)
ode_fn = ODETerm(
make_diffrax_ode(cosmo,
mesh_shape,
paint_absolute_pos=False,
halo_size=halo_size,
sharding=sharding))
y0 = jnp.stack([dx, p])
solver = Dopri5()
controller = PIDController(rtol=1e-8,
atol=1e-8,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
solutions = diffeqsolve(ode_fn,
solver,
t0=0.1,
t1=1.0,
dt0=None,
y0=y0,
stepsize_controller=controller,
saveat=saveat)
if absolute_painting:
multi_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
solutions.ys[-1, 0],
halo_size=halo_size,
sharding=sharding)
else:
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
halo_size=halo_size,
sharding=sharding)
multi_device_final_field = process_allgather(multi_device_final_field,
tiled=True)
mse = MSE(single_device_final_field, multi_device_final_field)
print(f"MSE is {mse}")
assert mse < _TOLERANCE

View file

@ -1,87 +0,0 @@
import jax
import pytest
from diffrax import (BacksolveAdjoint, Dopri5, ODETerm, PIDController,
RecursiveCheckpointAdjoint, SaveAt, diffeqsolve)
from helpers import MSE
from jax import numpy as jnp
from jaxpm.distributed import uniform_particles
from jaxpm.painting import cic_paint, cic_paint_dx
from jaxpm.pm import lpt, make_diffrax_ode
@pytest.mark.single_device
@pytest.mark.parametrize("order", [1, 2])
@pytest.mark.parametrize("absolute_painting", [True, False])
@pytest.mark.parametrize("adjoint", ['DTO', 'OTD'])
def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
nbody_from_lpt1, nbody_from_lpt2, cosmo, order,
absolute_painting, adjoint):
mesh_shape, _ = simulation_config
cosmo._workspace = {}
if adjoint == 'OTD':
pytest.skip("OTD adjoint not implemented yet (needs PFFT3D JVP)")
adjoint = RecursiveCheckpointAdjoint(
) if adjoint == 'DTO' else BacksolveAdjoint(solver=Dopri5())
@jax.jit
@jax.grad
def forward_model(initial_conditions, cosmo):
# Initial displacement
if absolute_painting:
particles = uniform_particles(mesh_shape)
dx, p, _ = lpt(cosmo,
initial_conditions,
particles,
a=lpt_scale_factor,
order=order)
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
y0 = jnp.stack([particles + dx, p])
else:
dx, p, _ = lpt(cosmo,
initial_conditions,
a=lpt_scale_factor,
order=order)
ode_fn = ODETerm(
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
y0 = jnp.stack([dx, p])
solver = Dopri5()
controller = PIDController(rtol=1e-7,
atol=1e-7,
pcoeff=0.4,
icoeff=1,
dcoeff=0)
saveat = SaveAt(t1=True)
solutions = diffeqsolve(ode_fn,
solver,
t0=lpt_scale_factor,
t1=1.0,
dt0=None,
y0=y0,
adjoint=adjoint,
stepsize_controller=controller,
saveat=saveat)
if absolute_painting:
final_field = cic_paint(jnp.zeros(mesh_shape), solutions.ys[-1, 0])
else:
final_field = cic_paint_dx(solutions.ys[-1, 0])
return MSE(final_field,
nbody_from_lpt1 if order == 1 else nbody_from_lpt2)
bad_initial_conditions = initial_conditions + jax.random.normal(
jax.random.PRNGKey(0), initial_conditions.shape) * 0.5
best_ic = forward_model(initial_conditions, cosmo)
bad_ic = forward_model(bad_initial_conditions, cosmo)
assert jnp.max(best_ic) < 1e-5
assert jnp.max(bad_ic) > 1e-5