mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-11 21:50:55 +00:00
Compare commits
6 commits
f8325b1c67
...
e1daa8cba4
Author | SHA1 | Date | |
---|---|---|---|
|
e1daa8cba4 | ||
|
4e4d3745f0 | ||
|
9f494da317 | ||
|
580387ce1c | ||
|
eb0778aa24 | ||
|
91d3292923 |
5 changed files with 332 additions and 24 deletions
|
@ -12,7 +12,7 @@ from jaxpm.kernels import cic_compensation, fftk
|
||||||
from jaxpm.painting_utils import gather, scatter
|
from jaxpm.painting_utils import gather, scatter
|
||||||
|
|
||||||
|
|
||||||
def _cic_paint_impl(grid_mesh, positions, weight=None):
|
def _cic_paint_impl(grid_mesh, positions, weight=1.):
|
||||||
""" Paints positions onto mesh
|
""" Paints positions onto mesh
|
||||||
mesh: [nx, ny, nz]
|
mesh: [nx, ny, nz]
|
||||||
displacement field: [nx, ny, nz, 3]
|
displacement field: [nx, ny, nz, 3]
|
||||||
|
@ -27,12 +27,10 @@ def _cic_paint_impl(grid_mesh, positions, weight=None):
|
||||||
neighboor_coords = floor + connection
|
neighboor_coords = floor + connection
|
||||||
kernel = 1. - jnp.abs(positions - neighboor_coords)
|
kernel = 1. - jnp.abs(positions - neighboor_coords)
|
||||||
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
|
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
|
||||||
if weight is not None:
|
if jnp.isscalar(weight):
|
||||||
if jnp.isscalar(weight):
|
kernel = jnp.multiply(jnp.expand_dims(weight, axis=-1), kernel)
|
||||||
kernel = jnp.multiply(jnp.expand_dims(weight, axis=-1), kernel)
|
else:
|
||||||
else:
|
kernel = jnp.multiply(weight.reshape(*positions.shape[:-1]), kernel)
|
||||||
kernel = jnp.multiply(weight.reshape(*positions.shape[:-1]),
|
|
||||||
kernel)
|
|
||||||
|
|
||||||
neighboor_coords = jnp.mod(
|
neighboor_coords = jnp.mod(
|
||||||
neighboor_coords.reshape([-1, 8, 3]).astype('int32'),
|
neighboor_coords.reshape([-1, 8, 3]).astype('int32'),
|
||||||
|
@ -48,7 +46,13 @@ def _cic_paint_impl(grid_mesh, positions, weight=None):
|
||||||
|
|
||||||
|
|
||||||
@partial(jax.jit, static_argnums=(3, 4))
|
@partial(jax.jit, static_argnums=(3, 4))
|
||||||
def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
|
def cic_paint(grid_mesh, positions, weight=1., halo_size=0, sharding=None):
|
||||||
|
|
||||||
|
if sharding is not None:
|
||||||
|
print("""
|
||||||
|
WARNING : absolute painting is not recommended in multi-device mode.
|
||||||
|
Please use relative painting instead.
|
||||||
|
""")
|
||||||
|
|
||||||
positions = positions.reshape((*grid_mesh.shape, 3))
|
positions = positions.reshape((*grid_mesh.shape, 3))
|
||||||
|
|
||||||
|
@ -57,9 +61,11 @@ def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
|
||||||
|
|
||||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||||
|
weight_spec = P() if jnp.isscalar(weight) else spec
|
||||||
|
|
||||||
grid_mesh = autoshmap(_cic_paint_impl,
|
grid_mesh = autoshmap(_cic_paint_impl,
|
||||||
gpu_mesh=gpu_mesh,
|
gpu_mesh=gpu_mesh,
|
||||||
in_specs=(spec, spec, P()),
|
in_specs=(spec, spec, weight_spec),
|
||||||
out_specs=spec)(grid_mesh, positions, weight)
|
out_specs=spec)(grid_mesh, positions, weight)
|
||||||
grid_mesh = halo_exchange(grid_mesh,
|
grid_mesh = halo_exchange(grid_mesh,
|
||||||
halo_extents=halo_extents,
|
halo_extents=halo_extents,
|
||||||
|
@ -151,7 +157,10 @@ def cic_paint_2d(mesh, positions, weight):
|
||||||
return mesh
|
return mesh
|
||||||
|
|
||||||
|
|
||||||
def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
|
def _cic_paint_dx_impl(displacements,
|
||||||
|
weight=1.,
|
||||||
|
halo_size=0,
|
||||||
|
chunk_size=2**24):
|
||||||
|
|
||||||
halo_x, _ = halo_size[0]
|
halo_x, _ = halo_size[0]
|
||||||
halo_y, _ = halo_size[1]
|
halo_y, _ = halo_size[1]
|
||||||
|
@ -190,13 +199,13 @@ def cic_paint_dx(displacements,
|
||||||
|
|
||||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||||
|
weight_spec = P() if jnp.isscalar(weight) else spec
|
||||||
grid_mesh = autoshmap(partial(_cic_paint_dx_impl,
|
grid_mesh = autoshmap(partial(_cic_paint_dx_impl,
|
||||||
halo_size=halo_size,
|
halo_size=halo_size,
|
||||||
weight=weight,
|
|
||||||
chunk_size=chunk_size),
|
chunk_size=chunk_size),
|
||||||
gpu_mesh=gpu_mesh,
|
gpu_mesh=gpu_mesh,
|
||||||
in_specs=spec,
|
in_specs=(spec, weight_spec),
|
||||||
out_specs=spec)(displacements)
|
out_specs=spec)(displacements, weight)
|
||||||
|
|
||||||
grid_mesh = halo_exchange(grid_mesh,
|
grid_mesh = halo_exchange(grid_mesh,
|
||||||
halo_extents=halo_extents,
|
halo_extents=halo_extents,
|
||||||
|
|
|
@ -37,3 +37,50 @@ Each notebook includes installation instructions and guidelines for configuring
|
||||||
- **SLURM** for job scheduling on clusters (if running multi-host setups)
|
- **SLURM** for job scheduling on clusters (if running multi-host setups)
|
||||||
|
|
||||||
> **Note**: These notebooks are tested on the **Jean Zay** supercomputer and may require configuration changes for different HPC clusters.
|
> **Note**: These notebooks are tested on the **Jean Zay** supercomputer and may require configuration changes for different HPC clusters.
|
||||||
|
|
||||||
|
## Caveats
|
||||||
|
|
||||||
|
### Cloud-in-Cell (CIC) Painting (Single Device)
|
||||||
|
|
||||||
|
There is two ways to perform the CIC painting in JAXPM. The first one is to use the `cic_paint` which paints absolute particle positions to the mesh. The second one is to use the `cic_paint_dx` which paints relative particle positions to the mesh (using uniform particles). The absolute version is faster at the cost of more memory usage.
|
||||||
|
|
||||||
|
inorder to use relative painting you need to :
|
||||||
|
|
||||||
|
- Set the `particles` argument in `lpt` function from `jaxpm.pm` to `None`
|
||||||
|
- Set `paint_absolute_pos` to `False` in `make_ode_fn` or `make_diffrax_ode` function from `jaxpm.pm` (it is True by default)
|
||||||
|
|
||||||
|
Otherwise you set `particles` to the starting particles of your choice and leave `paint_absolute_pos` to `True` (default value).
|
||||||
|
|
||||||
|
### Cloud-in-Cell (CIC) Painting (Multi Device)
|
||||||
|
|
||||||
|
Both `cic_paint` and `cic_paint_dx` functions are available in multi-device mode.
|
||||||
|
|
||||||
|
You need to set the arguments `sharding` and `halo_size` which is explained in the notebook [03-MultiGPU_PM_Halo.ipynb](03-MultiGPU_PM_Halo.ipynb).
|
||||||
|
|
||||||
|
One thing to note that `cic_paint` is not as accurate as `cic_paint_dx` in multi-device mode and therefor is not recommended.
|
||||||
|
|
||||||
|
Using relative painting in multi-device mode is just like in single device mode.\
|
||||||
|
You need to set the `particles` argument in `lpt` function from `jaxpm.pm` to `None` and set `paint_absolute_pos` to `False`
|
||||||
|
|
||||||
|
### Distributed PM
|
||||||
|
|
||||||
|
To run a distributed PM follow the examples in notebooks [03](03-MultiGPU_PM_Halo.ipynb) and [05](05-MultiHost_PM.ipynb) for multi-host.
|
||||||
|
|
||||||
|
In short you need to set the arguments `sharding` and `halo_size` in `lpt` , `linear_field` the `make_ode` functions and `pm_forces` if you use it.
|
||||||
|
|
||||||
|
Missmatching the shardings will give you errors and unexpected results.
|
||||||
|
|
||||||
|
You can also use `normal_field` and `uniform_particles` from `jaxpm.pm.distributed` to create the fields and particles with a sharding.
|
||||||
|
|
||||||
|
### Choosing the right pdims
|
||||||
|
|
||||||
|
pdims are processor dimensions.\
|
||||||
|
Explained more in the jaxdecomp paper [here](https://github.com/DifferentiableUniverseInitiative/jaxDecomp).
|
||||||
|
|
||||||
|
For 8 devices there are three decompositions that are possible:
|
||||||
|
- (1 , 8)
|
||||||
|
- (2 , 4) , (4 , 2)
|
||||||
|
- (8 , 1)
|
||||||
|
|
||||||
|
(1 , X) should be the fastest (2 , X) or (X , 2) is more accurate but slightly slower.\
|
||||||
|
and (X , 1) is giving the least accurate results for some reason so it is not recommended.
|
||||||
|
|
|
@ -76,7 +76,7 @@ def test_nbody_absolute(simulation_config, initial_conditions,
|
||||||
a=lpt_scale_factor,
|
a=lpt_scale_factor,
|
||||||
order=order)
|
order=order)
|
||||||
|
|
||||||
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
|
ode_fn = ODETerm(make_diffrax_ode(mesh_shape))
|
||||||
|
|
||||||
solver = Dopri5()
|
solver = Dopri5()
|
||||||
controller = PIDController(rtol=1e-8,
|
controller = PIDController(rtol=1e-8,
|
||||||
|
@ -95,6 +95,7 @@ def test_nbody_absolute(simulation_config, initial_conditions,
|
||||||
t1=1.0,
|
t1=1.0,
|
||||||
dt0=None,
|
dt0=None,
|
||||||
y0=y0,
|
y0=y0,
|
||||||
|
args=cosmo,
|
||||||
stepsize_controller=controller,
|
stepsize_controller=controller,
|
||||||
saveat=saveat)
|
saveat=saveat)
|
||||||
|
|
||||||
|
@ -121,8 +122,7 @@ def test_nbody_relative(simulation_config, initial_conditions,
|
||||||
# Initial displacement
|
# Initial displacement
|
||||||
dx, p, _ = lpt(cosmo, initial_conditions, a=lpt_scale_factor, order=order)
|
dx, p, _ = lpt(cosmo, initial_conditions, a=lpt_scale_factor, order=order)
|
||||||
|
|
||||||
ode_fn = ODETerm(
|
ode_fn = ODETerm(make_diffrax_ode(mesh_shape, paint_absolute_pos=False))
|
||||||
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
|
|
||||||
|
|
||||||
solver = Dopri5()
|
solver = Dopri5()
|
||||||
controller = PIDController(rtol=1e-9,
|
controller = PIDController(rtol=1e-9,
|
||||||
|
@ -141,6 +141,7 @@ def test_nbody_relative(simulation_config, initial_conditions,
|
||||||
t1=1.0,
|
t1=1.0,
|
||||||
dt0=None,
|
dt0=None,
|
||||||
y0=y0,
|
y0=y0,
|
||||||
|
args=cosmo,
|
||||||
stepsize_controller=controller,
|
stepsize_controller=controller,
|
||||||
saveat=saveat)
|
saveat=saveat)
|
||||||
|
|
||||||
|
|
|
@ -2,8 +2,11 @@ from conftest import initialize_distributed
|
||||||
|
|
||||||
initialize_distributed() # ignore : E402
|
initialize_distributed() # ignore : E402
|
||||||
|
|
||||||
|
from functools import partial # noqa : E402
|
||||||
|
|
||||||
import jax # noqa : E402
|
import jax # noqa : E402
|
||||||
import jax.numpy as jnp # noqa : E402
|
import jax.numpy as jnp # noqa : E402
|
||||||
|
import jax_cosmo as jc # noqa : E402
|
||||||
import pytest # noqa : E402
|
import pytest # noqa : E402
|
||||||
from diffrax import SaveAt # noqa : E402
|
from diffrax import SaveAt # noqa : E402
|
||||||
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
|
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
|
||||||
|
@ -12,19 +15,31 @@ from jax import lax # noqa : E402
|
||||||
from jax.experimental.multihost_utils import process_allgather # noqa : E402
|
from jax.experimental.multihost_utils import process_allgather # noqa : E402
|
||||||
from jax.sharding import NamedSharding
|
from jax.sharding import NamedSharding
|
||||||
from jax.sharding import PartitionSpec as P # noqa : E402
|
from jax.sharding import PartitionSpec as P # noqa : E402
|
||||||
|
from jaxdecomp import get_fft_output_sharding
|
||||||
|
|
||||||
from jaxpm.distributed import uniform_particles # noqa : E402
|
from jaxpm.distributed import uniform_particles # noqa : E402
|
||||||
|
from jaxpm.distributed import fft3d, ifft3d
|
||||||
from jaxpm.painting import cic_paint, cic_paint_dx # noqa : E402
|
from jaxpm.painting import cic_paint, cic_paint_dx # noqa : E402
|
||||||
from jaxpm.pm import lpt, make_diffrax_ode # noqa : E402
|
from jaxpm.pm import lpt, make_diffrax_ode, pm_forces # noqa : E402
|
||||||
|
|
||||||
_TOLERANCE = 3.0 # 🙃🙃
|
_TOLERANCE = 1e-1 # 🙃🙃
|
||||||
|
|
||||||
|
pdims = [(1, 8), (8, 1), (4, 2), (2, 4)]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.distributed
|
@pytest.mark.distributed
|
||||||
@pytest.mark.parametrize("order", [1, 2])
|
@pytest.mark.parametrize("order", [1, 2])
|
||||||
|
@pytest.mark.parametrize("pdims", pdims)
|
||||||
@pytest.mark.parametrize("absolute_painting", [True, False])
|
@pytest.mark.parametrize("absolute_painting", [True, False])
|
||||||
def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
||||||
absolute_painting):
|
pdims, absolute_painting):
|
||||||
|
|
||||||
|
if absolute_painting:
|
||||||
|
pytest.skip("Absolute painting is not recommended in distributed mode")
|
||||||
|
|
||||||
|
painting_str = "absolute" if absolute_painting else "relative"
|
||||||
|
print("=" * 50)
|
||||||
|
print(f"Running with {painting_str} painting and pdims {pdims} ...")
|
||||||
|
|
||||||
mesh_shape, box_shape = simulation_config
|
mesh_shape, box_shape = simulation_config
|
||||||
# SINGLE DEVICE RUN
|
# SINGLE DEVICE RUN
|
||||||
|
@ -60,6 +75,7 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
||||||
t1=1.0,
|
t1=1.0,
|
||||||
dt0=None,
|
dt0=None,
|
||||||
y0=y0,
|
y0=y0,
|
||||||
|
args=cosmo,
|
||||||
stepsize_controller=controller,
|
stepsize_controller=controller,
|
||||||
saveat=saveat)
|
saveat=saveat)
|
||||||
|
|
||||||
|
@ -72,7 +88,7 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
||||||
print("Done with single device run")
|
print("Done with single device run")
|
||||||
# MULTI DEVICE RUN
|
# MULTI DEVICE RUN
|
||||||
|
|
||||||
mesh = jax.make_mesh((1, 8), ('x', 'y'))
|
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||||
sharding = NamedSharding(mesh, P('x', 'y'))
|
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||||
halo_size = mesh_shape[0] // 2
|
halo_size = mesh_shape[0] // 2
|
||||||
|
|
||||||
|
@ -128,16 +144,23 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
||||||
t1=1.0,
|
t1=1.0,
|
||||||
dt0=None,
|
dt0=None,
|
||||||
y0=y0,
|
y0=y0,
|
||||||
|
args=cosmo,
|
||||||
stepsize_controller=controller,
|
stepsize_controller=controller,
|
||||||
saveat=saveat)
|
saveat=saveat)
|
||||||
|
|
||||||
|
final_field = solutions.ys[-1, 0]
|
||||||
|
print(f"Final field sharding is {final_field.sharding}")
|
||||||
|
|
||||||
|
assert final_field.sharding.is_equivalent_to(sharding , ndim=3) \
|
||||||
|
, f"Final field sharding is not correct .. should be {sharding} it is instead {final_field.sharding}"
|
||||||
|
|
||||||
if absolute_painting:
|
if absolute_painting:
|
||||||
multi_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
|
multi_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
|
||||||
solutions.ys[-1, 0],
|
final_field,
|
||||||
halo_size=halo_size,
|
halo_size=halo_size,
|
||||||
sharding=sharding)
|
sharding=sharding)
|
||||||
else:
|
else:
|
||||||
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
|
multi_device_final_field = cic_paint_dx(final_field,
|
||||||
halo_size=halo_size,
|
halo_size=halo_size,
|
||||||
sharding=sharding)
|
sharding=sharding)
|
||||||
|
|
||||||
|
@ -148,3 +171,230 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
||||||
print(f"MSE is {mse}")
|
print(f"MSE is {mse}")
|
||||||
|
|
||||||
assert mse < _TOLERANCE
|
assert mse < _TOLERANCE
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.distributed
|
||||||
|
@pytest.mark.parametrize("order", [1, 2])
|
||||||
|
@pytest.mark.parametrize("pdims", pdims)
|
||||||
|
def test_distrubted_gradients(simulation_config, initial_conditions, cosmo,
|
||||||
|
order, nbody_from_lpt1, nbody_from_lpt2, pdims):
|
||||||
|
|
||||||
|
mesh_shape, box_shape = simulation_config
|
||||||
|
# SINGLE DEVICE RUN
|
||||||
|
cosmo._workspace = {}
|
||||||
|
|
||||||
|
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||||
|
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||||
|
halo_size = mesh_shape[0] // 2
|
||||||
|
|
||||||
|
initial_conditions = lax.with_sharding_constraint(initial_conditions,
|
||||||
|
sharding)
|
||||||
|
|
||||||
|
print(f"sharded initial conditions {initial_conditions.sharding}")
|
||||||
|
cosmo._workspace = {}
|
||||||
|
|
||||||
|
@jax.jit
|
||||||
|
def forward_model(initial_conditions, cosmo):
|
||||||
|
|
||||||
|
dx, p, _ = lpt(cosmo,
|
||||||
|
initial_conditions,
|
||||||
|
a=0.1,
|
||||||
|
order=order,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
ode_fn = ODETerm(
|
||||||
|
make_diffrax_ode(mesh_shape,
|
||||||
|
paint_absolute_pos=False,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding))
|
||||||
|
y0 = jax.tree.map(lambda dx, p: jnp.stack([dx, p]), dx, p)
|
||||||
|
|
||||||
|
solver = Dopri5()
|
||||||
|
controller = PIDController(rtol=1e-8,
|
||||||
|
atol=1e-8,
|
||||||
|
pcoeff=0.4,
|
||||||
|
icoeff=1,
|
||||||
|
dcoeff=0)
|
||||||
|
|
||||||
|
saveat = SaveAt(t1=True)
|
||||||
|
solutions = diffeqsolve(ode_fn,
|
||||||
|
solver,
|
||||||
|
t0=0.1,
|
||||||
|
t1=1.0,
|
||||||
|
dt0=None,
|
||||||
|
y0=y0,
|
||||||
|
args=cosmo,
|
||||||
|
stepsize_controller=controller,
|
||||||
|
saveat=saveat)
|
||||||
|
|
||||||
|
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
|
||||||
|
return multi_device_final_field
|
||||||
|
|
||||||
|
@jax.jit
|
||||||
|
def model(initial_conditions, cosmo):
|
||||||
|
final_field = forward_model(initial_conditions, cosmo)
|
||||||
|
return MSE(final_field,
|
||||||
|
nbody_from_lpt1 if order == 1 else nbody_from_lpt2)
|
||||||
|
|
||||||
|
obs_val = model(initial_conditions, cosmo)
|
||||||
|
|
||||||
|
shifted_initial_conditions = initial_conditions + jax.random.normal(
|
||||||
|
jax.random.key(42), initial_conditions.shape) * 5
|
||||||
|
|
||||||
|
good_grads = jax.grad(model)(initial_conditions, cosmo)
|
||||||
|
off_grads = jax.grad(model)(shifted_initial_conditions, cosmo)
|
||||||
|
|
||||||
|
assert good_grads.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||||
|
ndim=3)
|
||||||
|
assert off_grads.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||||
|
ndim=3)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.distributed
|
||||||
|
@pytest.mark.parametrize("pdims", pdims)
|
||||||
|
def test_fwd_rev_gradients(cosmo, pdims):
|
||||||
|
|
||||||
|
mesh_shape, box_shape = (8, 8, 8), (20.0, 20.0, 20.0)
|
||||||
|
cosmo._workspace = {}
|
||||||
|
|
||||||
|
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||||
|
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||||
|
halo_size = mesh_shape[0] // 2
|
||||||
|
|
||||||
|
initial_conditions = jax.random.normal(jax.random.PRNGKey(42), mesh_shape)
|
||||||
|
initial_conditions = lax.with_sharding_constraint(initial_conditions,
|
||||||
|
sharding)
|
||||||
|
print(f"sharded initial conditions {initial_conditions.sharding}")
|
||||||
|
cosmo._workspace = {}
|
||||||
|
|
||||||
|
@partial(jax.jit, static_argnums=(2, 3, 4))
|
||||||
|
def compute_forces(initial_conditions,
|
||||||
|
cosmo,
|
||||||
|
a=0.5,
|
||||||
|
halo_size=0,
|
||||||
|
sharding=None):
|
||||||
|
|
||||||
|
paint_absolute_pos = False
|
||||||
|
particles = jnp.zeros_like(initial_conditions,
|
||||||
|
shape=(*initial_conditions.shape, 3))
|
||||||
|
|
||||||
|
a = jnp.atleast_1d(a)
|
||||||
|
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
|
||||||
|
|
||||||
|
initial_conditions = jax.lax.with_sharding_constraint(
|
||||||
|
initial_conditions, sharding)
|
||||||
|
delta_k = fft3d(initial_conditions)
|
||||||
|
out_sharding = get_fft_output_sharding(sharding)
|
||||||
|
delta_k = jax.lax.with_sharding_constraint(delta_k, out_sharding)
|
||||||
|
|
||||||
|
initial_force = pm_forces(particles,
|
||||||
|
delta=delta_k,
|
||||||
|
paint_absolute_pos=paint_absolute_pos,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
|
||||||
|
return initial_force[..., 0]
|
||||||
|
|
||||||
|
forces = compute_forces(initial_conditions,
|
||||||
|
cosmo,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
back_gradient = jax.jacrev(compute_forces)(initial_conditions,
|
||||||
|
cosmo,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
fwd_gradient = jax.jacfwd(compute_forces)(initial_conditions,
|
||||||
|
cosmo,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
|
||||||
|
print(f"Forces sharding is {forces.sharding}")
|
||||||
|
print(f"Backward gradient sharding is {back_gradient.sharding}")
|
||||||
|
print(f"Forward gradient sharding is {fwd_gradient.sharding}")
|
||||||
|
assert forces.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||||
|
ndim=3)
|
||||||
|
assert back_gradient[0, 0, 0, ...].sharding.is_equivalent_to(
|
||||||
|
initial_conditions.sharding, ndim=3)
|
||||||
|
assert fwd_gradient.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||||
|
ndim=3)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.distributed
|
||||||
|
@pytest.mark.parametrize("pdims", pdims)
|
||||||
|
def test_vmap(cosmo, pdims):
|
||||||
|
|
||||||
|
mesh_shape, box_shape = (8, 8, 8), (20.0, 20.0, 20.0)
|
||||||
|
cosmo._workspace = {}
|
||||||
|
|
||||||
|
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||||
|
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||||
|
halo_size = mesh_shape[0] // 2
|
||||||
|
|
||||||
|
single_dev_initial_conditions = jax.random.normal(jax.random.PRNGKey(42),
|
||||||
|
mesh_shape)
|
||||||
|
initial_conditions = lax.with_sharding_constraint(
|
||||||
|
single_dev_initial_conditions, sharding)
|
||||||
|
|
||||||
|
single_ics = jnp.stack([
|
||||||
|
single_dev_initial_conditions, single_dev_initial_conditions,
|
||||||
|
single_dev_initial_conditions
|
||||||
|
])
|
||||||
|
sharded_ics = jnp.stack(
|
||||||
|
[initial_conditions, initial_conditions, initial_conditions])
|
||||||
|
print(f"unsharded initial conditions batch {single_ics.sharding}")
|
||||||
|
print(f"sharded initial conditions batch {sharded_ics.sharding}")
|
||||||
|
cosmo._workspace = {}
|
||||||
|
|
||||||
|
@partial(jax.jit, static_argnums=(2, 3, 4))
|
||||||
|
def compute_forces(initial_conditions,
|
||||||
|
cosmo,
|
||||||
|
a=0.5,
|
||||||
|
halo_size=0,
|
||||||
|
sharding=None):
|
||||||
|
|
||||||
|
paint_absolute_pos = False
|
||||||
|
particles = jnp.zeros_like(initial_conditions,
|
||||||
|
shape=(*initial_conditions.shape, 3))
|
||||||
|
|
||||||
|
a = jnp.atleast_1d(a)
|
||||||
|
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
|
||||||
|
|
||||||
|
initial_conditions = jax.lax.with_sharding_constraint(
|
||||||
|
initial_conditions, sharding)
|
||||||
|
delta_k = fft3d(initial_conditions)
|
||||||
|
out_sharding = get_fft_output_sharding(sharding)
|
||||||
|
delta_k = jax.lax.with_sharding_constraint(delta_k, out_sharding)
|
||||||
|
|
||||||
|
initial_force = pm_forces(particles,
|
||||||
|
delta=delta_k,
|
||||||
|
paint_absolute_pos=paint_absolute_pos,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
|
||||||
|
return initial_force[..., 0]
|
||||||
|
|
||||||
|
def fn(ic):
|
||||||
|
return compute_forces(ic,
|
||||||
|
cosmo,
|
||||||
|
halo_size=halo_size,
|
||||||
|
sharding=sharding)
|
||||||
|
|
||||||
|
v_compute_forces = jax.vmap(fn)
|
||||||
|
|
||||||
|
print(f"single_ics shape {single_ics.shape}")
|
||||||
|
print(f"sharded_ics shape {sharded_ics.shape}")
|
||||||
|
|
||||||
|
single_dev_forces = v_compute_forces(single_ics)
|
||||||
|
sharded_forces = v_compute_forces(sharded_ics)
|
||||||
|
|
||||||
|
assert single_dev_forces.ndim == 4
|
||||||
|
assert sharded_forces.ndim == 4
|
||||||
|
|
||||||
|
print(f"Sharded forces {sharded_forces.sharding}")
|
||||||
|
|
||||||
|
assert sharded_forces[0].sharding.is_equivalent_to(
|
||||||
|
initial_conditions.sharding, ndim=3)
|
||||||
|
assert sharded_forces.sharding.spec[0] == None
|
||||||
|
|
|
@ -39,7 +39,7 @@ def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
|
||||||
particles,
|
particles,
|
||||||
a=lpt_scale_factor,
|
a=lpt_scale_factor,
|
||||||
order=order)
|
order=order)
|
||||||
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
|
ode_fn = ODETerm(make_diffrax_ode(mesh_shape))
|
||||||
y0 = jnp.stack([particles + dx, p])
|
y0 = jnp.stack([particles + dx, p])
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
@ -48,7 +48,7 @@ def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
|
||||||
a=lpt_scale_factor,
|
a=lpt_scale_factor,
|
||||||
order=order)
|
order=order)
|
||||||
ode_fn = ODETerm(
|
ode_fn = ODETerm(
|
||||||
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
|
make_diffrax_ode(mesh_shape, paint_absolute_pos=False))
|
||||||
y0 = jnp.stack([dx, p])
|
y0 = jnp.stack([dx, p])
|
||||||
|
|
||||||
solver = Dopri5()
|
solver = Dopri5()
|
||||||
|
@ -66,6 +66,7 @@ def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
|
||||||
t1=1.0,
|
t1=1.0,
|
||||||
dt0=None,
|
dt0=None,
|
||||||
y0=y0,
|
y0=y0,
|
||||||
|
args=cosmo,
|
||||||
adjoint=adjoint,
|
adjoint=adjoint,
|
||||||
stepsize_controller=controller,
|
stepsize_controller=controller,
|
||||||
saveat=saveat)
|
saveat=saveat)
|
||||||
|
|
Loading…
Add table
Reference in a new issue