mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-04 11:10:53 +00:00
Compare commits
7 commits
944a147bf0
...
c369cd6e38
Author | SHA1 | Date | |
---|---|---|---|
|
c369cd6e38 | ||
|
e1daa8cba4 | ||
|
4e4d3745f0 | ||
|
9f494da317 | ||
|
580387ce1c | ||
|
eb0778aa24 | ||
|
91d3292923 |
5 changed files with 332 additions and 24 deletions
|
@ -12,7 +12,7 @@ from jaxpm.kernels import cic_compensation, fftk
|
|||
from jaxpm.painting_utils import gather, scatter
|
||||
|
||||
|
||||
def _cic_paint_impl(grid_mesh, positions, weight=None):
|
||||
def _cic_paint_impl(grid_mesh, positions, weight=1.):
|
||||
""" Paints positions onto mesh
|
||||
mesh: [nx, ny, nz]
|
||||
displacement field: [nx, ny, nz, 3]
|
||||
|
@ -27,12 +27,10 @@ def _cic_paint_impl(grid_mesh, positions, weight=None):
|
|||
neighboor_coords = floor + connection
|
||||
kernel = 1. - jnp.abs(positions - neighboor_coords)
|
||||
kernel = kernel[..., 0] * kernel[..., 1] * kernel[..., 2]
|
||||
if weight is not None:
|
||||
if jnp.isscalar(weight):
|
||||
kernel = jnp.multiply(jnp.expand_dims(weight, axis=-1), kernel)
|
||||
else:
|
||||
kernel = jnp.multiply(weight.reshape(*positions.shape[:-1]),
|
||||
kernel)
|
||||
if jnp.isscalar(weight):
|
||||
kernel = jnp.multiply(jnp.expand_dims(weight, axis=-1), kernel)
|
||||
else:
|
||||
kernel = jnp.multiply(weight.reshape(*positions.shape[:-1]), kernel)
|
||||
|
||||
neighboor_coords = jnp.mod(
|
||||
neighboor_coords.reshape([-1, 8, 3]).astype('int32'),
|
||||
|
@ -48,7 +46,13 @@ def _cic_paint_impl(grid_mesh, positions, weight=None):
|
|||
|
||||
|
||||
@partial(jax.jit, static_argnums=(3, 4))
|
||||
def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
|
||||
def cic_paint(grid_mesh, positions, weight=1., halo_size=0, sharding=None):
|
||||
|
||||
if sharding is not None:
|
||||
print("""
|
||||
WARNING : absolute painting is not recommended in multi-device mode.
|
||||
Please use relative painting instead.
|
||||
""")
|
||||
|
||||
positions = positions.reshape((*grid_mesh.shape, 3))
|
||||
|
||||
|
@ -57,9 +61,11 @@ def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
|
|||
|
||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||
weight_spec = P() if jnp.isscalar(weight) else spec
|
||||
|
||||
grid_mesh = autoshmap(_cic_paint_impl,
|
||||
gpu_mesh=gpu_mesh,
|
||||
in_specs=(spec, spec, P()),
|
||||
in_specs=(spec, spec, weight_spec),
|
||||
out_specs=spec)(grid_mesh, positions, weight)
|
||||
grid_mesh = halo_exchange(grid_mesh,
|
||||
halo_extents=halo_extents,
|
||||
|
@ -151,7 +157,10 @@ def cic_paint_2d(mesh, positions, weight):
|
|||
return mesh
|
||||
|
||||
|
||||
def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
|
||||
def _cic_paint_dx_impl(displacements,
|
||||
weight=1.,
|
||||
halo_size=0,
|
||||
chunk_size=2**24):
|
||||
|
||||
halo_x, _ = halo_size[0]
|
||||
halo_y, _ = halo_size[1]
|
||||
|
@ -190,13 +199,13 @@ def cic_paint_dx(displacements,
|
|||
|
||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||
weight_spec = P() if jnp.isscalar(weight) else spec
|
||||
grid_mesh = autoshmap(partial(_cic_paint_dx_impl,
|
||||
halo_size=halo_size,
|
||||
weight=weight,
|
||||
chunk_size=chunk_size),
|
||||
gpu_mesh=gpu_mesh,
|
||||
in_specs=spec,
|
||||
out_specs=spec)(displacements)
|
||||
in_specs=(spec, weight_spec),
|
||||
out_specs=spec)(displacements, weight)
|
||||
|
||||
grid_mesh = halo_exchange(grid_mesh,
|
||||
halo_extents=halo_extents,
|
||||
|
|
|
@ -37,3 +37,50 @@ Each notebook includes installation instructions and guidelines for configuring
|
|||
- **SLURM** for job scheduling on clusters (if running multi-host setups)
|
||||
|
||||
> **Note**: These notebooks are tested on the **Jean Zay** supercomputer and may require configuration changes for different HPC clusters.
|
||||
|
||||
## Caveats
|
||||
|
||||
### Cloud-in-Cell (CIC) Painting (Single Device)
|
||||
|
||||
There is two ways to perform the CIC painting in JAXPM. The first one is to use the `cic_paint` which paints absolute particle positions to the mesh. The second one is to use the `cic_paint_dx` which paints relative particle positions to the mesh (using uniform particles). The absolute version is faster at the cost of more memory usage.
|
||||
|
||||
inorder to use relative painting you need to :
|
||||
|
||||
- Set the `particles` argument in `lpt` function from `jaxpm.pm` to `None`
|
||||
- Set `paint_absolute_pos` to `False` in `make_ode_fn` or `make_diffrax_ode` function from `jaxpm.pm` (it is True by default)
|
||||
|
||||
Otherwise you set `particles` to the starting particles of your choice and leave `paint_absolute_pos` to `True` (default value).
|
||||
|
||||
### Cloud-in-Cell (CIC) Painting (Multi Device)
|
||||
|
||||
Both `cic_paint` and `cic_paint_dx` functions are available in multi-device mode.
|
||||
|
||||
You need to set the arguments `sharding` and `halo_size` which is explained in the notebook [03-MultiGPU_PM_Halo.ipynb](03-MultiGPU_PM_Halo.ipynb).
|
||||
|
||||
One thing to note that `cic_paint` is not as accurate as `cic_paint_dx` in multi-device mode and therefor is not recommended.
|
||||
|
||||
Using relative painting in multi-device mode is just like in single device mode.\
|
||||
You need to set the `particles` argument in `lpt` function from `jaxpm.pm` to `None` and set `paint_absolute_pos` to `False`
|
||||
|
||||
### Distributed PM
|
||||
|
||||
To run a distributed PM follow the examples in notebooks [03](03-MultiGPU_PM_Halo.ipynb) and [05](05-MultiHost_PM.ipynb) for multi-host.
|
||||
|
||||
In short you need to set the arguments `sharding` and `halo_size` in `lpt` , `linear_field` the `make_ode` functions and `pm_forces` if you use it.
|
||||
|
||||
Missmatching the shardings will give you errors and unexpected results.
|
||||
|
||||
You can also use `normal_field` and `uniform_particles` from `jaxpm.pm.distributed` to create the fields and particles with a sharding.
|
||||
|
||||
### Choosing the right pdims
|
||||
|
||||
pdims are processor dimensions.\
|
||||
Explained more in the jaxdecomp paper [here](https://github.com/DifferentiableUniverseInitiative/jaxDecomp).
|
||||
|
||||
For 8 devices there are three decompositions that are possible:
|
||||
- (1 , 8)
|
||||
- (2 , 4) , (4 , 2)
|
||||
- (8 , 1)
|
||||
|
||||
(1 , X) should be the fastest (2 , X) or (X , 2) is more accurate but slightly slower.\
|
||||
and (X , 1) is giving the least accurate results for some reason so it is not recommended.
|
||||
|
|
|
@ -76,7 +76,7 @@ def test_nbody_absolute(simulation_config, initial_conditions,
|
|||
a=lpt_scale_factor,
|
||||
order=order)
|
||||
|
||||
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
|
||||
ode_fn = ODETerm(make_diffrax_ode(mesh_shape))
|
||||
|
||||
solver = Dopri5()
|
||||
controller = PIDController(rtol=1e-8,
|
||||
|
@ -95,6 +95,7 @@ def test_nbody_absolute(simulation_config, initial_conditions,
|
|||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
args=cosmo,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
|
@ -121,8 +122,7 @@ def test_nbody_relative(simulation_config, initial_conditions,
|
|||
# Initial displacement
|
||||
dx, p, _ = lpt(cosmo, initial_conditions, a=lpt_scale_factor, order=order)
|
||||
|
||||
ode_fn = ODETerm(
|
||||
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
|
||||
ode_fn = ODETerm(make_diffrax_ode(mesh_shape, paint_absolute_pos=False))
|
||||
|
||||
solver = Dopri5()
|
||||
controller = PIDController(rtol=1e-9,
|
||||
|
@ -141,6 +141,7 @@ def test_nbody_relative(simulation_config, initial_conditions,
|
|||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
args=cosmo,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
|
|
|
@ -2,8 +2,11 @@ from conftest import initialize_distributed
|
|||
|
||||
initialize_distributed() # ignore : E402
|
||||
|
||||
from functools import partial # noqa : E402
|
||||
|
||||
import jax # noqa : E402
|
||||
import jax.numpy as jnp # noqa : E402
|
||||
import jax_cosmo as jc # noqa : E402
|
||||
import pytest # noqa : E402
|
||||
from diffrax import SaveAt # noqa : E402
|
||||
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
|
||||
|
@ -12,19 +15,31 @@ from jax import lax # noqa : E402
|
|||
from jax.experimental.multihost_utils import process_allgather # noqa : E402
|
||||
from jax.sharding import NamedSharding
|
||||
from jax.sharding import PartitionSpec as P # noqa : E402
|
||||
from jaxdecomp import get_fft_output_sharding
|
||||
|
||||
from jaxpm.distributed import uniform_particles # noqa : E402
|
||||
from jaxpm.distributed import fft3d, ifft3d
|
||||
from jaxpm.painting import cic_paint, cic_paint_dx # noqa : E402
|
||||
from jaxpm.pm import lpt, make_diffrax_ode # noqa : E402
|
||||
from jaxpm.pm import lpt, make_diffrax_ode, pm_forces # noqa : E402
|
||||
|
||||
_TOLERANCE = 3.0 # 🙃🙃
|
||||
_TOLERANCE = 1e-1 # 🙃🙃
|
||||
|
||||
pdims = [(1, 8), (8, 1), (4, 2), (2, 4)]
|
||||
|
||||
|
||||
@pytest.mark.distributed
|
||||
@pytest.mark.parametrize("order", [1, 2])
|
||||
@pytest.mark.parametrize("pdims", pdims)
|
||||
@pytest.mark.parametrize("absolute_painting", [True, False])
|
||||
def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
||||
absolute_painting):
|
||||
pdims, absolute_painting):
|
||||
|
||||
if absolute_painting:
|
||||
pytest.skip("Absolute painting is not recommended in distributed mode")
|
||||
|
||||
painting_str = "absolute" if absolute_painting else "relative"
|
||||
print("=" * 50)
|
||||
print(f"Running with {painting_str} painting and pdims {pdims} ...")
|
||||
|
||||
mesh_shape, box_shape = simulation_config
|
||||
# SINGLE DEVICE RUN
|
||||
|
@ -60,6 +75,7 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
|||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
args=cosmo,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
|
@ -72,7 +88,7 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
|||
print("Done with single device run")
|
||||
# MULTI DEVICE RUN
|
||||
|
||||
mesh = jax.make_mesh((1, 8), ('x', 'y'))
|
||||
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||
halo_size = mesh_shape[0] // 2
|
||||
|
||||
|
@ -128,16 +144,23 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
|||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
args=cosmo,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
final_field = solutions.ys[-1, 0]
|
||||
print(f"Final field sharding is {final_field.sharding}")
|
||||
|
||||
assert final_field.sharding.is_equivalent_to(sharding , ndim=3) \
|
||||
, f"Final field sharding is not correct .. should be {sharding} it is instead {final_field.sharding}"
|
||||
|
||||
if absolute_painting:
|
||||
multi_device_final_field = cic_paint(jnp.zeros(shape=mesh_shape),
|
||||
solutions.ys[-1, 0],
|
||||
final_field,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
else:
|
||||
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
|
||||
multi_device_final_field = cic_paint_dx(final_field,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
|
||||
|
@ -148,3 +171,230 @@ def test_distrubted_pm(simulation_config, initial_conditions, cosmo, order,
|
|||
print(f"MSE is {mse}")
|
||||
|
||||
assert mse < _TOLERANCE
|
||||
|
||||
|
||||
@pytest.mark.distributed
|
||||
@pytest.mark.parametrize("order", [1, 2])
|
||||
@pytest.mark.parametrize("pdims", pdims)
|
||||
def test_distrubted_gradients(simulation_config, initial_conditions, cosmo,
|
||||
order, nbody_from_lpt1, nbody_from_lpt2, pdims):
|
||||
|
||||
mesh_shape, box_shape = simulation_config
|
||||
# SINGLE DEVICE RUN
|
||||
cosmo._workspace = {}
|
||||
|
||||
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||
halo_size = mesh_shape[0] // 2
|
||||
|
||||
initial_conditions = lax.with_sharding_constraint(initial_conditions,
|
||||
sharding)
|
||||
|
||||
print(f"sharded initial conditions {initial_conditions.sharding}")
|
||||
cosmo._workspace = {}
|
||||
|
||||
@jax.jit
|
||||
def forward_model(initial_conditions, cosmo):
|
||||
|
||||
dx, p, _ = lpt(cosmo,
|
||||
initial_conditions,
|
||||
a=0.1,
|
||||
order=order,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
ode_fn = ODETerm(
|
||||
make_diffrax_ode(mesh_shape,
|
||||
paint_absolute_pos=False,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding))
|
||||
y0 = jax.tree.map(lambda dx, p: jnp.stack([dx, p]), dx, p)
|
||||
|
||||
solver = Dopri5()
|
||||
controller = PIDController(rtol=1e-8,
|
||||
atol=1e-8,
|
||||
pcoeff=0.4,
|
||||
icoeff=1,
|
||||
dcoeff=0)
|
||||
|
||||
saveat = SaveAt(t1=True)
|
||||
solutions = diffeqsolve(ode_fn,
|
||||
solver,
|
||||
t0=0.1,
|
||||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
args=cosmo,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
multi_device_final_field = cic_paint_dx(solutions.ys[-1, 0],
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
|
||||
return multi_device_final_field
|
||||
|
||||
@jax.jit
|
||||
def model(initial_conditions, cosmo):
|
||||
final_field = forward_model(initial_conditions, cosmo)
|
||||
return MSE(final_field,
|
||||
nbody_from_lpt1 if order == 1 else nbody_from_lpt2)
|
||||
|
||||
obs_val = model(initial_conditions, cosmo)
|
||||
|
||||
shifted_initial_conditions = initial_conditions + jax.random.normal(
|
||||
jax.random.key(42), initial_conditions.shape) * 5
|
||||
|
||||
good_grads = jax.grad(model)(initial_conditions, cosmo)
|
||||
off_grads = jax.grad(model)(shifted_initial_conditions, cosmo)
|
||||
|
||||
assert good_grads.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||
ndim=3)
|
||||
assert off_grads.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||
ndim=3)
|
||||
|
||||
|
||||
@pytest.mark.distributed
|
||||
@pytest.mark.parametrize("pdims", pdims)
|
||||
def test_fwd_rev_gradients(cosmo, pdims):
|
||||
|
||||
mesh_shape, box_shape = (8, 8, 8), (20.0, 20.0, 20.0)
|
||||
cosmo._workspace = {}
|
||||
|
||||
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||
halo_size = mesh_shape[0] // 2
|
||||
|
||||
initial_conditions = jax.random.normal(jax.random.PRNGKey(42), mesh_shape)
|
||||
initial_conditions = lax.with_sharding_constraint(initial_conditions,
|
||||
sharding)
|
||||
print(f"sharded initial conditions {initial_conditions.sharding}")
|
||||
cosmo._workspace = {}
|
||||
|
||||
@partial(jax.jit, static_argnums=(2, 3, 4))
|
||||
def compute_forces(initial_conditions,
|
||||
cosmo,
|
||||
a=0.5,
|
||||
halo_size=0,
|
||||
sharding=None):
|
||||
|
||||
paint_absolute_pos = False
|
||||
particles = jnp.zeros_like(initial_conditions,
|
||||
shape=(*initial_conditions.shape, 3))
|
||||
|
||||
a = jnp.atleast_1d(a)
|
||||
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
|
||||
|
||||
initial_conditions = jax.lax.with_sharding_constraint(
|
||||
initial_conditions, sharding)
|
||||
delta_k = fft3d(initial_conditions)
|
||||
out_sharding = get_fft_output_sharding(sharding)
|
||||
delta_k = jax.lax.with_sharding_constraint(delta_k, out_sharding)
|
||||
|
||||
initial_force = pm_forces(particles,
|
||||
delta=delta_k,
|
||||
paint_absolute_pos=paint_absolute_pos,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
|
||||
return initial_force[..., 0]
|
||||
|
||||
forces = compute_forces(initial_conditions,
|
||||
cosmo,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
back_gradient = jax.jacrev(compute_forces)(initial_conditions,
|
||||
cosmo,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
fwd_gradient = jax.jacfwd(compute_forces)(initial_conditions,
|
||||
cosmo,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
|
||||
print(f"Forces sharding is {forces.sharding}")
|
||||
print(f"Backward gradient sharding is {back_gradient.sharding}")
|
||||
print(f"Forward gradient sharding is {fwd_gradient.sharding}")
|
||||
assert forces.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||
ndim=3)
|
||||
assert back_gradient[0, 0, 0, ...].sharding.is_equivalent_to(
|
||||
initial_conditions.sharding, ndim=3)
|
||||
assert fwd_gradient.sharding.is_equivalent_to(initial_conditions.sharding,
|
||||
ndim=3)
|
||||
|
||||
|
||||
@pytest.mark.distributed
|
||||
@pytest.mark.parametrize("pdims", pdims)
|
||||
def test_vmap(cosmo, pdims):
|
||||
|
||||
mesh_shape, box_shape = (8, 8, 8), (20.0, 20.0, 20.0)
|
||||
cosmo._workspace = {}
|
||||
|
||||
mesh = jax.make_mesh(pdims, ('x', 'y'))
|
||||
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||
halo_size = mesh_shape[0] // 2
|
||||
|
||||
single_dev_initial_conditions = jax.random.normal(jax.random.PRNGKey(42),
|
||||
mesh_shape)
|
||||
initial_conditions = lax.with_sharding_constraint(
|
||||
single_dev_initial_conditions, sharding)
|
||||
|
||||
single_ics = jnp.stack([
|
||||
single_dev_initial_conditions, single_dev_initial_conditions,
|
||||
single_dev_initial_conditions
|
||||
])
|
||||
sharded_ics = jnp.stack(
|
||||
[initial_conditions, initial_conditions, initial_conditions])
|
||||
print(f"unsharded initial conditions batch {single_ics.sharding}")
|
||||
print(f"sharded initial conditions batch {sharded_ics.sharding}")
|
||||
cosmo._workspace = {}
|
||||
|
||||
@partial(jax.jit, static_argnums=(2, 3, 4))
|
||||
def compute_forces(initial_conditions,
|
||||
cosmo,
|
||||
a=0.5,
|
||||
halo_size=0,
|
||||
sharding=None):
|
||||
|
||||
paint_absolute_pos = False
|
||||
particles = jnp.zeros_like(initial_conditions,
|
||||
shape=(*initial_conditions.shape, 3))
|
||||
|
||||
a = jnp.atleast_1d(a)
|
||||
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
|
||||
|
||||
initial_conditions = jax.lax.with_sharding_constraint(
|
||||
initial_conditions, sharding)
|
||||
delta_k = fft3d(initial_conditions)
|
||||
out_sharding = get_fft_output_sharding(sharding)
|
||||
delta_k = jax.lax.with_sharding_constraint(delta_k, out_sharding)
|
||||
|
||||
initial_force = pm_forces(particles,
|
||||
delta=delta_k,
|
||||
paint_absolute_pos=paint_absolute_pos,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
|
||||
return initial_force[..., 0]
|
||||
|
||||
def fn(ic):
|
||||
return compute_forces(ic,
|
||||
cosmo,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
|
||||
v_compute_forces = jax.vmap(fn)
|
||||
|
||||
print(f"single_ics shape {single_ics.shape}")
|
||||
print(f"sharded_ics shape {sharded_ics.shape}")
|
||||
|
||||
single_dev_forces = v_compute_forces(single_ics)
|
||||
sharded_forces = v_compute_forces(sharded_ics)
|
||||
|
||||
assert single_dev_forces.ndim == 4
|
||||
assert sharded_forces.ndim == 4
|
||||
|
||||
print(f"Sharded forces {sharded_forces.sharding}")
|
||||
|
||||
assert sharded_forces[0].sharding.is_equivalent_to(
|
||||
initial_conditions.sharding, ndim=3)
|
||||
assert sharded_forces.sharding.spec[0] == None
|
||||
|
|
|
@ -39,7 +39,7 @@ def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
|
|||
particles,
|
||||
a=lpt_scale_factor,
|
||||
order=order)
|
||||
ode_fn = ODETerm(make_diffrax_ode(cosmo, mesh_shape))
|
||||
ode_fn = ODETerm(make_diffrax_ode(mesh_shape))
|
||||
y0 = jnp.stack([particles + dx, p])
|
||||
|
||||
else:
|
||||
|
@ -48,7 +48,7 @@ def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
|
|||
a=lpt_scale_factor,
|
||||
order=order)
|
||||
ode_fn = ODETerm(
|
||||
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
|
||||
make_diffrax_ode(mesh_shape, paint_absolute_pos=False))
|
||||
y0 = jnp.stack([dx, p])
|
||||
|
||||
solver = Dopri5()
|
||||
|
@ -66,6 +66,7 @@ def test_nbody_grad(simulation_config, initial_conditions, lpt_scale_factor,
|
|||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
args=cosmo,
|
||||
adjoint=adjoint,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
|
Loading…
Add table
Reference in a new issue