mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-02-22 17:47:11 +00:00
adds growth functions from Chirag
This commit is contained in:
parent
3507339663
commit
faec622152
1 changed files with 608 additions and 0 deletions
608
jaxpm/growth.py
Normal file
608
jaxpm/growth.py
Normal file
|
@ -0,0 +1,608 @@
|
|||
import jax.numpy as np
|
||||
|
||||
from jax_cosmo.scipy.interpolate import interp
|
||||
from jax_cosmo.scipy.ode import odeint
|
||||
from jax_cosmo.background import *
|
||||
|
||||
def E(cosmo, a):
|
||||
r"""Scale factor dependent factor E(a) in the Hubble
|
||||
parameter.
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
Scale factor
|
||||
Returns
|
||||
-------
|
||||
E : ndarray, or float if input scalar
|
||||
Square of the scaling of the Hubble constant as a function of
|
||||
scale factor
|
||||
Notes
|
||||
-----
|
||||
The Hubble parameter at scale factor `a` is given by
|
||||
:math:`H^2(a) = E^2(a) H_o^2` where :math:`E^2` is obtained through
|
||||
Friedman's Equation (see :cite:`2005:Percival`) :
|
||||
.. math::
|
||||
E^2(a) = \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_{de} a^{f(a)}
|
||||
where :math:`f(a)` is the Dark Energy evolution parameter computed
|
||||
by :py:meth:`.f_de`.
|
||||
"""
|
||||
return np.power(Esqr(cosmo, a), 0.5)
|
||||
|
||||
|
||||
def df_de(cosmo, a, epsilon=1e-5):
|
||||
r"""Derivative of the evolution parameter for the Dark Energy density
|
||||
f(a) with respect to the scale factor.
|
||||
Parameters
|
||||
----------
|
||||
cosmo: Cosmology
|
||||
Cosmological parameters structure
|
||||
a : array_like
|
||||
Scale factor
|
||||
epsilon: float value
|
||||
Small number to make sure we are not dividing by 0 and avoid a singularity
|
||||
Returns
|
||||
-------
|
||||
df(a)/da : ndarray, or float if input scalar
|
||||
Derivative of the evolution parameter for the Dark Energy density
|
||||
with respect to the scale factor.
|
||||
Notes
|
||||
-----
|
||||
The expression for :math:`\frac{df(a)}{da}` is:
|
||||
.. math::
|
||||
\frac{df}{da}(a) = =\frac{3w_a \left( \ln(a-\epsilon)-
|
||||
\frac{a-1}{a-\epsilon}\right)}{\ln^2(a-\epsilon)}
|
||||
"""
|
||||
return (
|
||||
3
|
||||
* cosmo.wa
|
||||
* (np.log(a - epsilon) - (a - 1) / (a - epsilon))
|
||||
/ np.power(np.log(a - epsilon), 2)
|
||||
)
|
||||
|
||||
|
||||
def dEa(cosmo, a):
|
||||
r"""Derivative of the scale factor dependent factor E(a) in the Hubble
|
||||
parameter.
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
Scale factor
|
||||
Returns
|
||||
-------
|
||||
dE(a)/da : ndarray, or float if input scalar
|
||||
Derivative of the scale factor dependent factor in the Hubble
|
||||
parameter with respect to the scale factor.
|
||||
Notes
|
||||
-----
|
||||
The expression for :math:`\frac{dE}{da}` is:
|
||||
.. math::
|
||||
\frac{dE(a)}{da}=\frac{-3a^{-4}\Omega_{0m}
|
||||
-2a^{-3}\Omega_{0k}
|
||||
+f'_{de}\Omega_{0de}a^{f_{de}(a)}}{2E(a)}
|
||||
Notes
|
||||
-----
|
||||
The Hubble parameter at scale factor `a` is given by
|
||||
:math:`H^2(a) = E^2(a) H_o^2` where :math:`E^2` is obtained through
|
||||
Friedman's Equation (see :cite:`2005:Percival`) :
|
||||
.. math::
|
||||
E^2(a) = \Omega_m a^{-3} + \Omega_k a^{-2} + \Omega_{de} a^{f(a)}
|
||||
where :math:`f(a)` is the Dark Energy evolution parameter computed
|
||||
by :py:meth:`.f_de`.
|
||||
"""
|
||||
return (
|
||||
0.5
|
||||
* (
|
||||
-3 * cosmo.Omega_m * np.power(a, -4)
|
||||
- 2 * cosmo.Omega_k * np.power(a, -3)
|
||||
+ df_de(cosmo, a) * cosmo.Omega_de * np.power(a, f_de(cosmo, a))
|
||||
)
|
||||
/ np.power(Esqr(cosmo, a), 0.5)
|
||||
)
|
||||
|
||||
|
||||
def growth_factor(cosmo, a):
|
||||
"""Compute linear growth factor D(a) at a given scale factor,
|
||||
normalized such that D(a=1) = 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
D: ndarray, or float if input scalar
|
||||
Growth factor computed at requested scale factor
|
||||
|
||||
Notes
|
||||
-----
|
||||
The growth computation will depend on the cosmology parametrization, for
|
||||
instance if the $\gamma$ parameter is defined, the growth will be computed
|
||||
assuming the $f = \Omega^\gamma$ growth rate, otherwise the usual ODE for
|
||||
growth will be solved.
|
||||
"""
|
||||
if cosmo._flags["gamma_growth"]:
|
||||
return _growth_factor_gamma(cosmo, a)
|
||||
else:
|
||||
return _growth_factor_ODE(cosmo, a)
|
||||
|
||||
|
||||
def growth_factor_second(cosmo, a):
|
||||
"""Compute second order growth factor D2(a) at a given scale factor,
|
||||
normalized such that D(a=1) = 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
D2: ndarray, or float if input scalar
|
||||
Growth factor computed at requested scale factor
|
||||
|
||||
Notes
|
||||
-----
|
||||
The growth computation will depend on the cosmology parametrization,
|
||||
as for the linear growth. Currently the second order growth
|
||||
factor is not implemented with $\gamma$ parameter.
|
||||
"""
|
||||
if cosmo._flags["gamma_growth"]:
|
||||
raise NotImplementedError(
|
||||
"Gamma growth rate is not implemented for second order growth!"
|
||||
)
|
||||
return None
|
||||
else:
|
||||
return _growth_factor_second_ODE(cosmo, a)
|
||||
|
||||
|
||||
def growth_rate(cosmo, a):
|
||||
"""Compute growth rate dD/dlna at a given scale factor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
f: ndarray, or float if input scalar
|
||||
Growth rate computed at requested scale factor
|
||||
|
||||
Notes
|
||||
-----
|
||||
The growth computation will depend on the cosmology parametrization, for
|
||||
instance if the $\gamma$ parameter is defined, the growth will be computed
|
||||
assuming the $f = \Omega^\gamma$ growth rate, otherwise the usual ODE for
|
||||
growth will be solved.
|
||||
|
||||
The LCDM approximation to the growth rate :math:`f_{\gamma}(a)` is given by:
|
||||
|
||||
.. math::
|
||||
|
||||
f_{\gamma}(a) = \Omega_m^{\gamma} (a)
|
||||
|
||||
with :math: `\gamma` in LCDM, given approximately by:
|
||||
.. math::
|
||||
|
||||
\gamma = 0.55
|
||||
|
||||
see :cite:`2019:Euclid Preparation VII, eqn.32`
|
||||
"""
|
||||
if cosmo._flags["gamma_growth"]:
|
||||
return _growth_rate_gamma(cosmo, a)
|
||||
else:
|
||||
return _growth_rate_ODE(cosmo, a)
|
||||
|
||||
|
||||
def growth_rate_second(cosmo, a):
|
||||
"""Compute second order growth rate dD2/dlna at a given scale factor.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
f2: ndarray, or float if input scalar
|
||||
Second order growth rate computed at requested scale factor
|
||||
|
||||
Notes
|
||||
-----
|
||||
The growth computation will depend on the cosmology parametrization,
|
||||
as for the linear growth rate. Currently the second order growth
|
||||
rate is not implemented with $\gamma$ parameter.
|
||||
"""
|
||||
if cosmo._flags["gamma_growth"]:
|
||||
raise NotImplementedError(
|
||||
"Gamma growth factor is not implemented for second order growth!"
|
||||
)
|
||||
return None
|
||||
else:
|
||||
return _growth_rate_second_ODE(cosmo, a)
|
||||
|
||||
|
||||
def _growth_factor_ODE(cosmo, a, log10_amin=-3, steps=128, eps=1e-4):
|
||||
"""Compute linear growth factor D(a) at a given scale factor,
|
||||
normalised such that D(a=1) = 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
amin: float
|
||||
Mininum scale factor, default 1e-3
|
||||
|
||||
Returns
|
||||
-------
|
||||
D: ndarray, or float if input scalar
|
||||
Growth factor computed at requested scale factor
|
||||
"""
|
||||
# Check if growth has already been computed
|
||||
if not "background.growth_factor" in cosmo._workspace.keys():
|
||||
# Compute tabulated array
|
||||
atab = np.logspace(log10_amin, 0.0, steps)
|
||||
|
||||
def D_derivs(y, x):
|
||||
q = (
|
||||
2.0
|
||||
- 0.5
|
||||
* (
|
||||
Omega_m_a(cosmo, x)
|
||||
+ (1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x)
|
||||
)
|
||||
) / x
|
||||
r = 1.5 * Omega_m_a(cosmo, x) / x / x
|
||||
|
||||
g1, g2 = y[0]
|
||||
f1, f2 = y[1]
|
||||
dy1da = [f1, -q * f1 + r * g1]
|
||||
dy2da = [f2, -q * f2 + r * g2 - r * g1 ** 2]
|
||||
return np.array([[dy1da[0], dy2da[0]], [dy1da[1], dy2da[1]]])
|
||||
|
||||
y0 = np.array([[atab[0], -3.0 / 7 * atab[0] ** 2], [1.0, -6.0 / 7 * atab[0]]])
|
||||
y = odeint(D_derivs, y0, atab)
|
||||
|
||||
# compute second order derivatives growth
|
||||
dyda2 = D_derivs(np.transpose(y, (1, 2, 0)), atab)
|
||||
dyda2 = np.transpose(dyda2, (2, 0, 1))
|
||||
|
||||
# Normalize results
|
||||
y1 = y[:, 0, 0]
|
||||
gtab = y1 / y1[-1]
|
||||
y2 = y[:, 0, 1]
|
||||
g2tab = y2 / y2[-1]
|
||||
# To transform from dD/da to dlnD/dlna: dlnD/dlna = a / D dD/da
|
||||
ftab = y[:, 1, 0] / y1[-1] * atab / gtab
|
||||
f2tab = y[:, 1, 1] / y2[-1] * atab / g2tab
|
||||
# Similarly for second order derivatives
|
||||
# Note: these factors are not accessible as parent functions yet
|
||||
# since it is unclear what to refer to them with.
|
||||
htab = dyda2[:, 1, 0] / y1[-1] * atab / gtab
|
||||
h2tab = dyda2[:, 1, 1] / y2[-1] * atab / g2tab
|
||||
|
||||
cache = {
|
||||
"a": atab,
|
||||
"g": gtab,
|
||||
"f": ftab,
|
||||
"h": htab,
|
||||
"g2": g2tab,
|
||||
"f2": f2tab,
|
||||
"h2": h2tab,
|
||||
}
|
||||
cosmo._workspace["background.growth_factor"] = cache
|
||||
else:
|
||||
cache = cosmo._workspace["background.growth_factor"]
|
||||
return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0)
|
||||
|
||||
|
||||
def _growth_rate_ODE(cosmo, a):
|
||||
"""Compute growth rate dD/dlna at a given scale factor by solving the linear
|
||||
growth ODE.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
f: ndarray, or float if input scalar
|
||||
Growth rate computed at requested scale factor
|
||||
"""
|
||||
# Check if growth has already been computed, if not, compute it
|
||||
if not "background.growth_factor" in cosmo._workspace.keys():
|
||||
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
|
||||
cache = cosmo._workspace["background.growth_factor"]
|
||||
return interp(a, cache["a"], cache["f"])
|
||||
|
||||
|
||||
def _growth_factor_second_ODE(cosmo, a):
|
||||
"""Compute second order growth factor D2(a) at a given scale factor,
|
||||
normalised such that D(a=1) = 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
amin: float
|
||||
Mininum scale factor, default 1e-3
|
||||
|
||||
Returns
|
||||
-------
|
||||
D2: ndarray, or float if input scalar
|
||||
Second order growth factor computed at requested scale factor
|
||||
"""
|
||||
# Check if growth has already been computed, if not, compute it
|
||||
if not "background.growth_factor" in cosmo._workspace.keys():
|
||||
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
|
||||
cache = cosmo._workspace["background.growth_factor"]
|
||||
return interp(a, cache["a"], cache["g2"])
|
||||
|
||||
|
||||
def _growth_rate_ODE(cosmo, a):
|
||||
"""Compute growth rate dD/dlna at a given scale factor by solving the linear
|
||||
growth ODE.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
f: ndarray, or float if input scalar
|
||||
Second order growth rate computed at requested scale factor
|
||||
"""
|
||||
# Check if growth has already been computed, if not, compute it
|
||||
if not "background.growth_factor" in cosmo._workspace.keys():
|
||||
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
|
||||
cache = cosmo._workspace["background.growth_factor"]
|
||||
return interp(a, cache["a"], cache["f"])
|
||||
|
||||
|
||||
def _growth_rate_second_ODE(cosmo, a):
|
||||
"""Compute second order growth rate dD2/dlna at a given scale factor by solving the linear
|
||||
growth ODE.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
f2: ndarray, or float if input scalar
|
||||
Second order growth rate computed at requested scale factor
|
||||
"""
|
||||
# Check if growth has already been computed, if not, compute it
|
||||
if not "background.growth_factor" in cosmo._workspace.keys():
|
||||
_growth_factor_ODE(cosmo, np.atleast_1d(1.0))
|
||||
cache = cosmo._workspace["background.growth_factor"]
|
||||
return interp(a, cache["a"], cache["f2"])
|
||||
|
||||
|
||||
def _growth_factor_gamma(cosmo, a, log10_amin=-3, steps=128):
|
||||
r"""Computes growth factor by integrating the growth rate provided by the
|
||||
\gamma parametrization. Normalized such that D( a=1) =1
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a: array_like
|
||||
Scale factor
|
||||
|
||||
amin: float
|
||||
Mininum scale factor, default 1e-3
|
||||
|
||||
Returns
|
||||
-------
|
||||
D: ndarray, or float if input scalar
|
||||
Growth factor computed at requested scale factor
|
||||
|
||||
"""
|
||||
# Check if growth has already been computed, if not, compute it
|
||||
if not "background.growth_factor" in cosmo._workspace.keys():
|
||||
# Compute tabulated array
|
||||
atab = np.logspace(log10_amin, 0.0, steps)
|
||||
|
||||
def integrand(y, loga):
|
||||
xa = np.exp(loga)
|
||||
return _growth_rate_gamma(cosmo, xa)
|
||||
|
||||
gtab = np.exp(odeint(integrand, np.log(atab[0]), np.log(atab)))
|
||||
gtab = gtab / gtab[-1] # Normalize to a=1.
|
||||
cache = {"a": atab, "g": gtab}
|
||||
cosmo._workspace["background.growth_factor"] = cache
|
||||
else:
|
||||
cache = cosmo._workspace["background.growth_factor"]
|
||||
return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0)
|
||||
|
||||
|
||||
def _growth_rate_gamma(cosmo, a):
|
||||
r"""Growth rate approximation at scale factor `a`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: `Cosmology`
|
||||
Cosmology object
|
||||
|
||||
a : array_like
|
||||
Scale factor
|
||||
|
||||
Returns
|
||||
-------
|
||||
f_gamma : ndarray, or float if input scalar
|
||||
Growth rate approximation at the requested scale factor
|
||||
|
||||
Notes
|
||||
-----
|
||||
The LCDM approximation to the growth rate :math:`f_{\gamma}(a)` is given by:
|
||||
|
||||
.. math::
|
||||
|
||||
f_{\gamma}(a) = \Omega_m^{\gamma} (a)
|
||||
|
||||
with :math: `\gamma` in LCDM, given approximately by:
|
||||
.. math::
|
||||
|
||||
\gamma = 0.55
|
||||
|
||||
see :cite:`2019:Euclid Preparation VII, eqn.32`
|
||||
"""
|
||||
return Omega_m_a(cosmo, a) ** cosmo.gamma
|
||||
|
||||
|
||||
|
||||
def Gf(cosmo, a):
|
||||
r"""
|
||||
FastPM growth factor function
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: dict
|
||||
Cosmology dictionary.
|
||||
|
||||
a : array_like
|
||||
Scale factor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Scalar float Tensor : FastPM growth factor function.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The expression for :math:`Gf(a)` is:
|
||||
|
||||
.. math::
|
||||
Gf(a)=D'_{1norm}*a**3*E(a)
|
||||
"""
|
||||
f1 = growth_rate(cosmo, a)
|
||||
g1 = growth_factor(cosmo, a)
|
||||
D1f = f1*g1/ a
|
||||
return D1f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
|
||||
|
||||
|
||||
def Gf2(cosmo, a):
|
||||
r""" FastPM second order growth factor function
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: dict
|
||||
Cosmology dictionary.
|
||||
|
||||
a : array_like
|
||||
Scale factor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Scalar float Tensor : FastPM second order growth factor function.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The expression for :math:`Gf_2(a)` is:
|
||||
|
||||
.. math::
|
||||
Gf_2(a)=D'_{2norm}*a**3*E(a)
|
||||
"""
|
||||
f2 = growth_rate_second(cosmo, a)
|
||||
g2 = growth_factor_second(cosmo, a)
|
||||
D2f = f2*g2/ a
|
||||
return D2f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
|
||||
|
||||
|
||||
def dGfa(cosmo, a):
|
||||
r""" Derivative of Gf against a
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: dict
|
||||
Cosmology dictionary.
|
||||
|
||||
a : array_like
|
||||
Scale factor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Scalar float Tensor : the derivative of Gf against a.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The expression for :math:`gf(a)` is:
|
||||
|
||||
.. math::
|
||||
gf(a)=\frac{dGF}{da}= D^{''}_1 * a ** 3 *E(a) +D'_{1norm}*a ** 3 * E'(a)
|
||||
+ 3 * a ** 2 * E(a)*D'_{1norm}
|
||||
|
||||
"""
|
||||
f1 = growth_rate(cosmo, a)
|
||||
g1 = growth_factor(cosmo, a)
|
||||
D1f = f1*g1/ a
|
||||
cache = cosmo._workspace['background.growth_factor']
|
||||
f1p = cache['h'] / cache['a'] * cache['g']
|
||||
f1p = interp(np.log(a), np.log(cache['a']), f1p)
|
||||
Ea = E(cosmo, a)
|
||||
return (f1p * a**3 * Ea + D1f * a**3 * dEa(cosmo, a) +
|
||||
3 * a**2 * Ea * D1f)
|
||||
|
||||
|
||||
def dGf2a(cosmo, a):
|
||||
r""" Derivative of Gf2 against a
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cosmo: dict
|
||||
Cosmology dictionary.
|
||||
|
||||
a : array_like
|
||||
Scale factor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Scalar float Tensor : the derivative of Gf2 against a.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The expression for :math:`gf2(a)` is:
|
||||
|
||||
.. math::
|
||||
gf_2(a)=\frac{dGF_2}{da}= D^{''}_2 * a ** 3 *E(a) +D'_{2norm}*a ** 3 * E'(a)
|
||||
+ 3 * a ** 2 * E(a)*D'_{2norm}
|
||||
|
||||
"""
|
||||
f2 = growth_rate_second(cosmo, a)
|
||||
g2 = growth_factor_second(cosmo, a)
|
||||
D2f = f2*g2/ a
|
||||
cache = cosmo._workspace['background.growth_factor']
|
||||
f2p = cache['h2'] / cache['a'] * cache['g2']
|
||||
f2p = interp(np.log(a), np.log(cache['a']), f2p)
|
||||
E = E(cosmo, a)
|
||||
return (f2p * a**3 * E + D2f * a**3 * dEa(cosmo, a) +
|
||||
3 * a**2 * E * D2f)
|
Loading…
Add table
Reference in a new issue