Add Spherical lensing example

This commit is contained in:
Wassim Kabalan 2025-06-28 19:25:14 +02:00
parent 2d21985279
commit f6d547e31f
5 changed files with 1048 additions and 381 deletions

View file

@ -1,82 +1,181 @@
import jax
import jax.numpy as jnp
import jax_cosmo
import jax_cosmo as jc
import jax_cosmo.constants as constants
from jax.scipy.ndimage import map_coordinates
from jaxpm.painting import cic_paint_2d
from jaxpm.distributed import uniform_particles
from jaxpm.painting import cic_paint, cic_paint_2d, cic_paint_dx
from jaxpm.spherical import paint_spherical
from jaxpm.utils import gaussian_smoothing
def density_plane(positions,
box_shape,
center,
width,
plane_resolution,
smoothing_sigma=None):
""" Extacts a density plane from the simulation
def density_plane_fn(box_shape,
box_size,
density_plane_width,
density_plane_npix,
sharding=None):
def f(t, y, args):
positions = y[0]
cosmo = args
nx, ny, nz = box_shape
# Converts time t to comoving distance in voxel coordinates
w = density_plane_width / box_size[2] * box_shape[2]
center = jc.background.radial_comoving_distance(
cosmo, t) / box_size[2] * box_shape[2]
positions = uniform_particles(box_shape) + positions
xy = positions[..., :2]
d = positions[..., 2]
# Apply 2d periodic conditions
xy = jnp.mod(xy, nx)
# Rescaling positions to target grid
xy = xy / nx * density_plane_npix
# Selecting only particles that fall inside the volume of interest
weight = jnp.where((d > (center - w / 2)) & (d <= (center + w / 2)),
1.0, 0.0)
# Painting density plane
zero_mesh = jnp.zeros([density_plane_npix, density_plane_npix])
# Apply sharding in order to recover sharding when taking gradients
if sharding is not None:
xy = jax.lax.with_sharding_constraint(xy, sharding)
# Apply CIC painting
density_plane = cic_paint_2d(zero_mesh, xy, weight)
# Apply density normalization
density_plane = density_plane / ((nx / density_plane_npix) *
(ny / density_plane_npix) * w)
return density_plane
return f
def spherical_density_fn(box_shape,
box_size,
nside,
fov,
center_radec,
observer_position,
d_R,
sharding=None):
def f(t, y, args):
positions = y[0]
nx, ny, nz = box_shape
bx, by, bz = box_size
cosmo = args
# Converts time t to comoving distance in voxel coordinates
w = d_R / box_size[2] * box_shape[2]
center = ((jc.background.radial_comoving_distance(cosmo, t)) / bz) * nz
# Apply sharding in order to recover sharding when taking gradients
if sharding is not None:
positions = jax.lax.with_sharding_constraint(positions, sharding)
density_mesh = cic_paint_dx(positions)
# Project to spherical map
spherical_map = paint_spherical(density_mesh, nside, fov, center_radec,
observer_position, box_size, center,
d_R)
return spherical_map
return f
# ==========================================================
# Weak Lensing Born Approximation
# ==========================================================
def convergence_Born(cosmo, density_planes, r, a, dx, dz, coords, z_source):
"""
nx, ny, nz = box_shape
xy = positions[..., :2]
d = positions[..., 2]
Compute Born-approximation lensing convergence maps.
# Apply 2d periodic conditions
xy = jnp.mod(xy, nx)
Parameters
----------
cosmo : jc.Cosmology
Cosmology object.
density_planes : ndarray
3D array of lensing density planes [nx, ny, n_planes].
r, a : ndarray
Comoving distances and scale factors per plane.
dx : float
Pixel scale.
dz : float
Redshift bin width.
coords : ndarray
Angular coordinates grid [2, N, 2] in radians.
z_source : ndarray
Source redshifts.
# Rescaling positions to target grid
xy = xy / nx * plane_resolution
# Selecting only particles that fall inside the volume of interest
weight = jnp.where(
(d > (center - width / 2)) & (d <= (center + width / 2)), 1., 0.)
# Painting density plane
density_plane = cic_paint_2d(
jnp.zeros([plane_resolution, plane_resolution]), xy, weight)
# Apply density normalization
density_plane = density_plane / ((nx / plane_resolution) *
(ny / plane_resolution) * (width))
# Apply Gaussian smoothing if requested
if smoothing_sigma is not None:
density_plane = gaussian_smoothing(density_plane, smoothing_sigma)
return density_plane
def convergence_Born(cosmo, density_planes, coords, z_source):
Returns
-------
convergence : ndarray
2D convergence map for each source redshift.
"""
Compute the Born convergence
Args:
cosmo: `Cosmology`, cosmology object.
density_planes: list of dictionaries (r, a, density_plane, dx, dz), lens planes to use
coords: a 3-D array of angular coordinates in radians of N points with shape [batch, N, 2].
z_source: 1-D `Tensor` of source redshifts with shape [Nz] .
name: `string`, name of the operation.
Returns:
`Tensor` of shape [batch_size, N, Nz], of convergence values.
"""
# Compute constant prefactor:
constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2
# Compute comoving distance of source galaxies
r_s = jax_cosmo.background.radial_comoving_distance(
cosmo, 1 / (1 + z_source))
r_s = jc.background.radial_comoving_distance(cosmo, 1 / (1 + z_source))
n_planes = len(r)
convergence = 0
for entry in density_planes:
r = entry['r']
a = entry['a']
p = entry['plane']
dx = entry['dx']
dz = entry['dz']
# Normalize density planes
density_normalization = dz * r / a
def scan_fn(carry, i):
density_planes, a, r = carry
p = density_planes[:, :, i]
density_normalization = dz * r[i] / a[i]
p = (p - p.mean()) * constant_factor * density_normalization
# Interpolate at the density plane coordinates
im = map_coordinates(p, coords * r / dx - 0.5, order=1, mode="wrap")
im = map_coordinates(p, coords * r[i] / dx - 0.5, order=1, mode="wrap")
convergence += im * jnp.clip(1. -
(r / r_s), 0, 1000).reshape([-1, 1, 1])
return carry, im * jnp.clip(1.0 -
(r[i] / r_s), 0, 1000).reshape([-1, 1, 1])
return convergence
_, convergence = jax.lax.scan(scan_fn, (density_planes, a, r),
jnp.arange(n_planes))
return convergence.sum(axis=0)
def spherical_convergence_Born(cosmo, density_planes, r, a, nside, z_source):
"""
Compute Born-approximation lensing convergence maps on a sphere.
Parameters
----------
cosmo : jc.Cosmology
Cosmology object.
density_planes : ndarray
3D array of lensing density planes [n_planes, npix].
r, a : ndarray
Comoving distances and scale factors per plane.
nside : int
Healpix nside parameter.
z_source : ndarray
Source redshifts.
Returns
-------
convergence : ndarray
2D convergence map for each source redshift.
"""
constant_factor = 3 / 2 * cosmo.Omega_m * (constants.H0 / constants.c)**2
# Compute comoving distance of source galaxies
r_s = jc.background.radial_comoving_distance(cosmo, 1 / (1 + z_source))
n_planes = len(r)
def scan_fn(carry, i):
density_planes, a, r = carry
p = density_planes[i, :]
density_normalization = r[i] / a[
i] # This normalization needs to be checked
p = (p - p.mean()) * constant_factor * density_normalization
return carry, p * jnp.clip(1.0 -
(r[i] / r_s), 0, 1000).reshape([-1, 1])
_, convergence = jax.lax.scan(scan_fn, (density_planes, a, r),
jnp.arange(n_planes))
return convergence.sum(axis=0)

133
jaxpm/ode.py Normal file
View file

@ -0,0 +1,133 @@
from jaxpm.growth import E, Gf, dGfa, gp
from jaxpm.growth import growth_factor as Gp
from jaxpm.pm import pm_forces
def symplectic_fpm_ode(mesh_shape, dt0, paint_absolute_pos=True, halo_size=0, sharding=None):
def drift(a, vel, args):
"""
state is a tuple (position, velocities)
"""
cosmo = args[0]
# Get the time steps
t0 = a
t1 = a + dt0
# Set the scale factors
ai = t0
ac = (t0 * t1) ** 0.5 # Geometric mean of t0 and t1
af = t1
#drift_contr = (Gp(cosmo, af) - Gp(cosmo, ai)) / gp(cosmo, ac)
drift_contr = (af - ai )/ ac
# Computes the update of position (drift)
dpos = 1 / (ac**3 * E(cosmo, ac)) * vel
return dpos * (drift_contr / dt0)
def kick(a, pos, args):
"""
state is a tuple (position, velocities)
"""
# Computes the update of velocity (kick)
cosmo = args
# Get the time steps
t0 = a
t1 = t0 + dt0
t2 = t1 + dt0
t0t1 = (t0 * t1) ** 0.5 # Geometric mean of t0 and t1
t1t2 = (t1 * t2) ** 0.5 # Geometric mean of t1 and t2
# Set the scale factors
ac = t1
forces = (
pm_forces(
pos,
mesh_shape=mesh_shape,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding,
)
* 1.5
* cosmo.Omega_m
)
# Computes the update of velocity (kick)
dvel = 1.0 / (ac**2 * E(cosmo, ac)) * forces
# First kick control factor
kick_factor_1 = (t1 - t0t1) / t1
#kick_factor_1 = (Gf(cosmo, t1) - Gf(cosmo, t0t1)) / dGfa(cosmo, t1)
# Second kick control factor
kick_factor_2 = (t2 - t1t2) / t2
#kick_factor_2 = (Gf(cosmo, t1t2) - Gf(cosmo, t1)) / dGfa(cosmo, t1)
return dvel * ((kick_factor_1 + kick_factor_2) / dt0)
def first_kick(a, pos, args):
"""
state is a tuple (position, velocities)
"""
# Computes the update of velocity (kick)
cosmo = args
# Get the time steps
t0 = a
t1 = t0 + dt0
t0t1 = (t0 * t1) ** 0.5 # Geometric mean of t0 and t1
forces = (
pm_forces(
pos,
mesh_shape=mesh_shape,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding,
)
* 1.5
* cosmo.Omega_m
)
# Computes the update of velocity (kick)
dvel = 1.0 / (a**2 * E(cosmo, a)) * forces
# First kick control factor
kick_factor = (Gf(cosmo, t0t1) - Gf(cosmo, t0)) / dGfa(cosmo, t0)
return dvel * (kick_factor / dt0)
return drift, kick, first_kick
def symplectic_ode(mesh_shape, paint_absolute_pos=True, halo_size=0, sharding=None):
def drift(a, vel, args):
"""
state is a tuple (position, velocities)
"""
cosmo = args
# Computes the update of position (drift)
dpos = 1 / (a**3 * E(cosmo, a)) * vel
return dpos
def kick(a, pos, args):
"""
state is a tuple (position, velocities)
"""
# Computes the update of velocity (kick)
cosmo = args
forces = (
pm_forces(
pos,
mesh_shape=mesh_shape,
paint_absolute_pos=paint_absolute_pos,
halo_size=halo_size,
sharding=sharding,
)
* 1.5
* cosmo.Omega_m
)
# Computes the update of velocity (kick)
dvel = 1.0 / (a**2 * E(cosmo, a)) * forces
return dvel
return drift, kick

50
jaxpm/spherical.py Normal file
View file

@ -0,0 +1,50 @@
import jax.numpy as jnp
import jax_healpy as jhp
import matplotlib.pyplot as plt
import jax
from functools import partial
import healpy as hp
@partial(jax.jit, static_argnames=('nside', 'fov', 'center_radec' , 'd_R' , 'box_size'))
def paint_spherical(volume, nside, fov, center_radec, observer_position, box_size, R, d_R):
width, height, depth = volume.shape
ra0, dec0 = center_radec
fov_width, fov_height = fov
pixel_scale_x = fov_width / width
pixel_scale_y = fov_height / height
res_deg = jhp.nside2resol(nside, arcmin=True) / 60
if pixel_scale_x > res_deg or pixel_scale_y > res_deg:
print(f"WARNING Pixel scale ({pixel_scale_x:.4f} deg, {pixel_scale_y:.4f} deg) is larger than the Healpy resolution ({res_deg:.4f} deg). Increase the field of view or decrease the nside.")
y_idx, x_idx = jnp.indices((height, width))
ra_grid = ra0 + x_idx * pixel_scale_x
dec_grid = dec0 + y_idx * pixel_scale_y
ra_flat = ra_grid.flatten() * jnp.pi / 180.0
dec_flat = dec_grid.flatten() * jnp.pi / 180.0
R_s = jnp.arange(0 , d_R, 1.0) + R
XYZ = R_s.reshape(-1, 1, 1) * jhp.ang2vec(ra_flat, dec_flat, lonlat=False)
observer_position = jnp.array(observer_position)
# Convert observer position from box units to grid units
observer_position = observer_position / jnp.array(box_size) * jnp.array(volume.shape)
coords = XYZ + jnp.asarray(observer_position)[jnp.newaxis, jnp.newaxis, :]
pixels = jhp.ang2pix(nside, ra_flat, dec_flat, lonlat=False)
npix = jhp.nside2npix(nside)
@partial(jax.vmap, in_axes=(0, None, None))
def interpolate_volume(coords, volume, pixels):
voxels = jax.scipy.ndimage.map_coordinates(volume, coords.T, order=1)
sums = jnp.bincount(pixels, weights=voxels, length=npix)
return sums
sum_map = interpolate_volume(coords, volume, pixels).sum(axis=0)
counts = jnp.bincount(pixels, length=npix)
sum_map = jnp.where(counts > 0, sum_map / counts, jhp.UNSEEN)
return sum_map