Applying formatting

This commit is contained in:
EiffL 2024-07-09 14:54:34 -04:00
parent 835fa89aec
commit f28442bb48
14 changed files with 565 additions and 445 deletions

View file

@ -1,8 +1,8 @@
import jax.numpy as np
from jax_cosmo.background import *
from jax_cosmo.scipy.interpolate import interp
from jax_cosmo.scipy.ode import odeint
from jax_cosmo.background import *
def E(cosmo, a):
r"""Scale factor dependent factor E(a) in the Hubble
@ -52,12 +52,8 @@ def df_de(cosmo, a, epsilon=1e-5):
\frac{df}{da}(a) = =\frac{3w_a \left( \ln(a-\epsilon)-
\frac{a-1}{a-\epsilon}\right)}{\ln^2(a-\epsilon)}
"""
return (
3
* cosmo.wa
* (np.log(a - epsilon) - (a - 1) / (a - epsilon))
/ np.power(np.log(a - epsilon), 2)
)
return (3 * cosmo.wa * (np.log(a - epsilon) - (a - 1) / (a - epsilon)) /
np.power(np.log(a - epsilon), 2))
def dEa(cosmo, a):
@ -89,15 +85,11 @@ def dEa(cosmo, a):
where :math:`f(a)` is the Dark Energy evolution parameter computed
by :py:meth:`.f_de`.
"""
return (
0.5
* (
-3 * cosmo.Omega_m * np.power(a, -4)
- 2 * cosmo.Omega_k * np.power(a, -3)
+ df_de(cosmo, a) * cosmo.Omega_de * np.power(a, f_de(cosmo, a))
)
/ np.power(Esqr(cosmo, a), 0.5)
)
return (0.5 *
(-3 * cosmo.Omega_m * np.power(a, -4) -
2 * cosmo.Omega_k * np.power(a, -3) +
df_de(cosmo, a) * cosmo.Omega_de * np.power(a, f_de(cosmo, a))) /
np.power(Esqr(cosmo, a), 0.5))
def growth_factor(cosmo, a):
@ -155,8 +147,7 @@ def growth_factor_second(cosmo, a):
"""
if cosmo._flags["gamma_growth"]:
raise NotImplementedError(
"Gamma growth rate is not implemented for second order growth!"
)
"Gamma growth rate is not implemented for second order growth!")
return None
else:
return _growth_factor_second_ODE(cosmo, a)
@ -228,8 +219,7 @@ def growth_rate_second(cosmo, a):
"""
if cosmo._flags["gamma_growth"]:
raise NotImplementedError(
"Gamma growth factor is not implemented for second order growth!"
)
"Gamma growth factor is not implemented for second order growth!")
return None
else:
return _growth_rate_second_ODE(cosmo, a)
@ -258,23 +248,19 @@ def _growth_factor_ODE(cosmo, a, log10_amin=-3, steps=128, eps=1e-4):
atab = np.logspace(log10_amin, 0.0, steps)
def D_derivs(y, x):
q = (
2.0
- 0.5
* (
Omega_m_a(cosmo, x)
+ (1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x)
)
) / x
q = (2.0 - 0.5 *
(Omega_m_a(cosmo, x) +
(1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x))) / x
r = 1.5 * Omega_m_a(cosmo, x) / x / x
g1, g2 = y[0]
f1, f2 = y[1]
dy1da = [f1, -q * f1 + r * g1]
dy2da = [f2, -q * f2 + r * g2 - r * g1 ** 2]
dy2da = [f2, -q * f2 + r * g2 - r * g1**2]
return np.array([[dy1da[0], dy2da[0]], [dy1da[1], dy2da[1]]])
y0 = np.array([[atab[0], -3.0 / 7 * atab[0] ** 2], [1.0, -6.0 / 7 * atab[0]]])
y0 = np.array([[atab[0], -3.0 / 7 * atab[0]**2],
[1.0, -6.0 / 7 * atab[0]]])
y = odeint(D_derivs, y0, atab)
# compute second order derivatives growth
@ -473,8 +459,7 @@ def _growth_rate_gamma(cosmo, a):
see :cite:`2019:Euclid Preparation VII, eqn.32`
"""
return Omega_m_a(cosmo, a) ** cosmo.gamma
return Omega_m_a(cosmo, a)**cosmo.gamma
def Gf(cosmo, a):
@ -503,7 +488,7 @@ def Gf(cosmo, a):
"""
f1 = growth_rate(cosmo, a)
g1 = growth_factor(cosmo, a)
D1f = f1*g1/ a
D1f = f1 * g1 / a
return D1f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
@ -532,7 +517,7 @@ def Gf2(cosmo, a):
"""
f2 = growth_rate_second(cosmo, a)
g2 = growth_factor_second(cosmo, a)
D2f = f2*g2/ a
D2f = f2 * g2 / a
return D2f * np.power(a, 3) * np.power(Esqr(cosmo, a), 0.5)
@ -563,13 +548,12 @@ def dGfa(cosmo, a):
"""
f1 = growth_rate(cosmo, a)
g1 = growth_factor(cosmo, a)
D1f = f1*g1/ a
D1f = f1 * g1 / a
cache = cosmo._workspace['background.growth_factor']
f1p = cache['h'] / cache['a'] * cache['g']
f1p = interp(np.log(a), np.log(cache['a']), f1p)
Ea = E(cosmo, a)
return (f1p * a**3 * Ea + D1f * a**3 * dEa(cosmo, a) +
3 * a**2 * Ea * D1f)
return (f1p * a**3 * Ea + D1f * a**3 * dEa(cosmo, a) + 3 * a**2 * Ea * D1f)
def dGf2a(cosmo, a):
@ -599,10 +583,9 @@ def dGf2a(cosmo, a):
"""
f2 = growth_rate_second(cosmo, a)
g2 = growth_factor_second(cosmo, a)
D2f = f2*g2/ a
D2f = f2 * g2 / a
cache = cosmo._workspace['background.growth_factor']
f2p = cache['h2'] / cache['a'] * cache['g2']
f2p = interp(np.log(a), np.log(cache['a']), f2p)
E = E(cosmo, a)
return (f2p * a**3 * E + D2f * a**3 * dEa(cosmo, a) +
3 * a**2 * E * D2f)
return (f2p * a**3 * E + D2f * a**3 * dEa(cosmo, a) + 3 * a**2 * E * D2f)