Add aboucaud comments

This commit is contained in:
Wassim Kabalan 2024-12-08 23:11:11 +01:00
parent adaf7d236d
commit d8c68ace7a
10 changed files with 26 additions and 777 deletions

View file

@ -29,7 +29,7 @@ jobs:
run: |
sudo apt-get install -y libopenmpi-dev
python -m pip install --upgrade pip
pip install jax=0.4.35
pip install jax=0.4.35
pip install .[test]
- name: Run Single Device Tests

View file

@ -11,7 +11,7 @@ Provide a modern infrastructure to support differentiable PM N-body simulations
- Any order forward and backward automatic differentiation
- Support automated batching using `vmap`
- Compatibility with external optimizer libraries like `optax`
- Now fully distributable on **multi-GPU and multi-node** systems using [jaxDecomp](https://github.com/DifferentiableUniverseInitiative/jaxDecomp) working with the latex `JAX v0.4.35`
- Now fully distributable on **multi-GPU and multi-node** systems using [jaxDecomp](https://github.com/DifferentiableUniverseInitiative/jaxDecomp) working with`JAX v0.4.35`
## Open development and use

View file

@ -1,270 +0,0 @@
import os
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
import jax
jax.distributed.initialize()
rank = jax.process_index()
size = jax.process_count()
import argparse
import time
import jax.numpy as jnp
import jax_cosmo as jc
import numpy as np
from cupy.cuda.nvtx import RangePop, RangePush
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
PIDController, SaveAt, Tsit5, diffeqsolve)
from hpc_plotter.timer import Timer
from jax.experimental import mesh_utils
from jax.experimental.multihost_utils import sync_global_devices
from jax.sharding import Mesh, NamedSharding
from jax.sharding import PartitionSpec as P
from jaxpm.kernels import interpolate_power_spectrum
from jaxpm.painting import cic_paint_dx
from jaxpm.pm import linear_field, lpt, make_ode_fn
def run_simulation(mesh_shape,
box_size,
halo_size,
solver_choice,
iterations,
hlo_print,
trace,
pdims=None,
output_path="."):
@jax.jit
def simulate(omega_c, sigma8):
# Create a small function to generate the matter power spectrum
k = jnp.logspace(-4, 1, 128)
pk = jc.power.linear_matter_power(
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
# Create initial conditions
initial_conditions = linear_field(mesh_shape,
box_size,
pk_fn,
seed=jax.random.PRNGKey(0))
# Create particles
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
if solver_choice == "Dopri5":
solver = Dopri5()
elif solver_choice == "LeapfrogMidpoint":
solver = LeapfrogMidpoint()
elif solver_choice == "Tsit5":
solver = Tsit5()
elif solver_choice == "lpt":
lpt_field = cic_paint_dx(dx, halo_size=halo_size)
return lpt_field, {"num_steps": 0}
else:
raise ValueError(
"Invalid solver choice. Use 'Dopri5' or 'LeapfrogMidpoint'.")
# Evolve the simulation forward
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
term = ODETerm(
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
if solver_choice == "Dopri5" or solver_choice == "Tsit5":
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
elif solver_choice == "LeapfrogMidpoint" or solver_choice == "Euler":
stepsize_controller = ConstantStepSize()
res = diffeqsolve(term,
solver,
t0=0.1,
t1=1.,
dt0=0.01,
y0=jnp.stack([dx, p], axis=0),
args=cosmo,
saveat=SaveAt(t1=True),
stepsize_controller=stepsize_controller)
# Return the simulation volume at requested
state = res.ys[-1]
final_field = cic_paint_dx(state[0], halo_size=halo_size)
return final_field, res.stats
def run():
# Warm start
chrono_fun = Timer()
RangePush("warmup")
final_field, stats = chrono_fun.chrono_jit(simulate,
0.32,
0.8,
ndarray_arg=0)
RangePop()
sync_global_devices("warmup")
for i in range(iterations):
RangePush(f"sim iter {i}")
final_field, stats = chrono_fun.chrono_fun(simulate,
0.32,
0.8,
ndarray_arg=0)
RangePop()
return final_field, stats, chrono_fun
if jax.device_count() > 1:
devices = mesh_utils.create_device_mesh(pdims)
mesh = Mesh(devices.T, axis_names=('x', 'y'))
with mesh:
# Warm start
final_field, stats, chrono_fun = run()
else:
final_field, stats, chrono_fun = run()
return final_field, stats, chrono_fun
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='JAX Cosmo Simulation Benchmark')
parser.add_argument('-m',
'--mesh_size',
type=int,
help='Mesh size',
required=True)
parser.add_argument('-b',
'--box_size',
type=float,
help='Box size',
required=True)
parser.add_argument('-p',
'--pdims',
type=str,
help='Processor dimensions',
default=None)
parser.add_argument(
'-pr',
'--precision',
type=str,
help='Precision',
choices=["float32", "float64"],
)
parser.add_argument('-hs',
'--halo_size',
type=int,
help='Halo size',
default=None)
parser.add_argument('-s',
'--solver',
type=str,
help='Solver',
choices=[
"Dopri5", "dopri5", "d5", "Tsit5", "tsit5", "t5",
"LeapfrogMidpoint", "leapfrogmidpoint", "lfm",
"lpt"
],
default="lpt")
parser.add_argument('-o',
'--output_path',
type=str,
help='Output path',
default=".")
parser.add_argument('-f',
'--save_fields',
action='store_true',
help='Save fields')
parser.add_argument('-n',
'--nodes',
type=int,
help='Number of nodes',
default=1)
args = parser.parse_args()
mesh_size = args.mesh_size
box_size = [args.box_size] * 3
halo_size = args.mesh_size // 8 if args.halo_size is None else args.halo_size
solver_choice = args.solver
iterations = args.iterations
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
print(f"solver choice: {solver_choice}")
match solver_choice:
case "Dopri5" | "dopri5" | "d5":
solver_choice = "Dopri5"
case "Tsit5" | "tsit5" | "t5":
solver_choice = "Tsit5"
case "LeapfrogMidpoint" | "leapfrogmidpoint" | "lfm":
solver_choice = "LeapfrogMidpoint"
case "lpt":
solver_choice = "lpt"
case _:
raise ValueError(
"Invalid solver choice. Use 'Dopri5', 'Tsit5', 'LeapfrogMidpoint' or 'lpt"
)
if args.precision == "float32":
jax.config.update("jax_enable_x64", False)
elif args.precision == "float64":
jax.config.update("jax_enable_x64", True)
if args.pdims:
pdims = tuple(map(int, args.pdims.split("x")))
else:
pdims = (1, jax.device_count())
pdm_str = f"{pdims[0]}x{pdims[1]}"
mesh_shape = [mesh_size] * 3
final_field, stats, chrono_fun = run_simulation(mesh_shape, box_size,
halo_size, solver_choice,
iterations, pdims)
print(
f"shape of final_field {final_field.shape} and sharding spec {final_field.sharding} and local shape {final_field.addressable_data(0).shape}"
)
metadata = {
'rank': rank,
'function_name': f'JAXPM-{solver_choice}',
'precision': args.precision,
'x': str(mesh_size),
'y': str(mesh_size),
'z': str(stats["num_steps"]),
'px': str(pdims[0]),
'py': str(pdims[1]),
'backend': 'NCCL',
'nodes': str(args.nodes)
}
# Print the results to a CSV file
chrono_fun.print_to_csv(f'{output_path}/jaxpm_benchmark.csv', **metadata)
# Save the final field
nb_gpus = jax.device_count()
pdm_str = f"{pdims[0]}x{pdims[1]}"
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
os.makedirs(field_folder, exist_ok=True)
with open(f'{field_folder}/jaxpm.log', 'w') as f:
f.write(f"Args: {args}\n")
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
for i, time in enumerate(chrono_fun.times):
f.write(f"Time {i}: {time:.4f} ms\n")
f.write(f"Stats: {stats}\n")
if args.save_fields:
np.save(f'{field_folder}/final_field_0_{rank}.npy',
final_field.addressable_data(0))
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
os.makedirs(field_folder, exist_ok=True)
with open(f'{field_folder}/jaxpm.log', 'w') as f:
f.write(f"Args: {args}\n")
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
for i, time in enumerate(chrono_fun.times):
f.write(f"Time {i}: {time:.4f} ms\n")
f.write(f"Stats: {stats}\n")
if args.save_fields:
np.save(f'{field_folder}/final_field_0_{rank}.npy',
final_field.addressable_data(0))
print(f"Finished! ")
print(f"Stats {stats}")
print(f"Saving to {output_path}/jax_pm_benchmark.csv")
print(f"Saving field and logs in {field_folder}")

View file

@ -1,159 +0,0 @@
import os
# Change JAX GPU memory preallocation fraction
os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '.95'
import argparse
import jax
import matplotlib.pyplot as plt
import numpy as np
from hpc_plotter.timer import Timer
from pmwd import (Configuration, Cosmology, SimpleLCDM, boltzmann, growth,
linear_modes, linear_power, lpt, nbody, scatter, white_noise)
from pmwd.pm_util import fftinv
from pmwd.spec_util import powspec
from pmwd.vis_util import simshow
# Simulation configuration
def run_pmwd_simulation(ptcl_grid_shape, ptcl_spacing, solver, iterations):
@jax.jit
def simulate(omega_m, sigma8):
conf = Configuration(ptcl_spacing,
ptcl_grid_shape=ptcl_grid_shape,
mesh_shape=1,
lpt_order=1,
a_nbody_maxstep=1 / 91)
print(conf)
print(
f'Simulating {conf.ptcl_num} particles with a {conf.mesh_shape} mesh for {conf.a_nbody_num} time steps.'
)
cosmo = Cosmology(conf,
A_s_1e9=2.0,
n_s=0.96,
Omega_m=omega_m,
Omega_b=sigma8,
h=0.7)
print(cosmo)
# Boltzmann calculation
cosmo = boltzmann(cosmo, conf)
print("Boltzmann calculation completed.")
# Generate white noise field and scale with the linear power spectrum
seed = 0
modes = white_noise(seed, conf)
modes = linear_modes(modes, cosmo, conf)
print("Linear modes generated.")
# Solve LPT at some early time
ptcl, obsvbl = lpt(modes, cosmo, conf)
print("LPT solved.")
if solver == "lfm":
# N-body time integration from LPT initial conditions
ptcl, obsvbl = jax.block_until_ready(
nbody(ptcl, obsvbl, cosmo, conf))
print("N-body time integration completed.")
# Scatter particles to mesh to get the density field
dens = scatter(ptcl, conf)
return dens
chrono_timer = Timer()
final_field = chrono_timer.chrono_jit(simulate, 0.3, 0.05)
for _ in range(iterations):
final_field = chrono_timer.chrono_fun(simulate, 0.3, 0.05)
return final_field, chrono_timer
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PMWD Simulation')
parser.add_argument('-m',
'--mesh_size',
type=int,
help='Mesh size',
required=True)
parser.add_argument('-b',
'--box_size',
type=float,
help='Box size',
required=True)
parser.add_argument('-i',
'--iterations',
type=int,
help='Number of iterations',
default=10)
parser.add_argument('-o',
'--output_path',
type=str,
help='Output path',
default=".")
parser.add_argument('-f',
'--save_fields',
action='store_true',
help='Save fields')
parser.add_argument('-s',
'--solver',
type=str,
help='Solver',
choices=["lfm", "lpt"])
parser.add_argument(
'-pr',
'--precision',
type=str,
help='Precision',
choices=["float32", "float64"],
)
args = parser.parse_args()
mesh_shape = [args.mesh_size] * 3
ptcl_spacing = args.box_size / args.mesh_size
iterations = args.iterations
solver = args.solver
output_path = args.output_path
if args.precision == "float32":
jax.config.update("jax_enable_x64", False)
elif args.precision == "float64":
jax.config.update("jax_enable_x64", True)
os.makedirs(output_path, exist_ok=True)
final_field, chrono_fun = run_pmwd_simulation(mesh_shape, ptcl_spacing,
solver, iterations)
print("PMWD simulation completed.")
metadata = {
'rank': 0,
'function_name': f'PMWD-{solver}',
'precision': args.precision,
'x': str(mesh_shape[0]),
'y': str(mesh_shape[0]),
'z': str(mesh_shape[0]),
'px': "1",
'py': "1",
'backend': 'NCCL',
'nodes': "1"
}
chrono_fun.print_to_csv(f"{output_path}/pmwd.csv", **metadata)
field_folder = f"{output_path}/final_field/pmwd/1/{args.mesh_size}_{int(args.box_size)}/1x1/{args.solver}/halo_0"
os.makedirs(field_folder, exist_ok=True)
with open(f"{field_folder}/pmwd.log", "w") as f:
f.write(f"PMWD simulation completed.\n")
f.write(f"Args : {args}\n")
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
for i, time in enumerate(chrono_fun.times):
f.write(f"Time {i}: {time:.4f} ms\n")
if args.save_fields:
np.save(f"{field_folder}/final_field_0_0.npy", final_field)
print("Fields saved.")
print(f"saving to {output_path}/pmwd.csv")
print(f"saving field and logs to {field_folder}/pmwd.log")

View file

@ -1,157 +0,0 @@
#!/bin/bash
##############################################################################################################################
# USAGE:sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 benchmarks/particle_mesh_a100.slurm
##############################################################################################################################
#SBATCH --job-name=Particle-Mesh # nom du job
#SBATCH --cpus-per-task=8 # nombre de CPU par tache pour gpu_p5 (1/8 du noeud 8-GPU)
#SBATCH --hint=nomultithread # hyperthreading desactive
#SBATCH --time=04:00:00 # temps d'execution maximum demande (HH:MM:SS)
#SBATCH --output=%x_%N_a100.out # nom du fichier de sortie
#SBATCH --error=%x_%N_a100.err # nom du fichier d'erreur (ici commun avec la sortie)
#SBATCH --exclusive # ressources dediees
##SBATCH --qos=qos_gpu-dev
# Nettoyage des modules charges en interactif et herites par defaut
num_nodes=$SLURM_JOB_NUM_NODES
num_gpu_per_node=$SLURM_NTASKS_PER_NODE
OUTPUT_FOLDER_ARGS=1
# Calculate the number of GPUs
nb_gpus=$(( num_nodes * num_gpu_per_node))
module purge
echo "Job partition: $SLURM_JOB_PARTITION"
# Decommenter la commande module suivante si vous utilisez la partition "gpu_p5"
# pour avoir acces aux modules compatibles avec cette partition
if [[ "$SLURM_JOB_PARTITION" == "gpu_p5" ]]; then
module load cpuarch/amd
source /gpfsdswork/projects/rech/tkc/commun/venv/a100/bin/activate
gpu_name=a100
else
source /gpfsdswork/projects/rech/tkc/commun/venv/v100/bin/activate
gpu_name=v100
fi
# Chargement des modules
module load nvidia-compilers/23.9 cuda/12.2.0 cudnn/8.9.7.29-cuda openmpi/4.1.5-cuda nccl/2.18.5-1-cuda cmake
module load nvidia-nsight-systems/2024.1.1.59
echo "The number of nodes allocated for this job is: $num_nodes"
echo "The number of GPUs allocated for this job is: $nb_gpus"
export EQX_ON_ERROR=nan
export ENABLE_PERFO_STEP=NVTX
export MPI4JAX_USE_CUDA_MPI=1
function profile_python() {
if [ $# -lt 1 ]; then
echo "Usage: profile_python <python_script> [arguments for the script]"
return 1
fi
local script_name=$(basename "$1" .py)
local output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name"
local report_dir="out_prof/$gpu_name/$nb_gpus/$script_name"
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
local args=$(echo "${@:2}" | tr ' ' '_')
# Remove characters '/' and '-' from folder name
args=$(echo "$args" | tr -d '/-')
output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name/$args"
report_dir="out_prof/$gpu_name/$nb_gpus/$script_name/$args"
fi
mkdir -p "$output_dir"
mkdir -p "$report_dir"
srun timeout 10m nsys profile -t cuda,nvtx,osrt,mpi -o "$report_dir/report_rank%q{SLURM_PROCID}" python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
}
function run_python() {
if [ $# -lt 1 ]; then
echo "Usage: run_python <python_script> [arguments for the script]"
return 1
fi
local script_name=$(basename "$1" .py)
local output_dir="traces/$gpu_name/$nb_gpus/$script_name"
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
local args=$(echo "${@:2}" | tr ' ' '_')
# Remove characters '/' and '-' from folder name
args=$(echo "$args" | tr -d '/-')
output_dir="traces/$gpu_name/$nb_gpus/$script_name/$args"
fi
mkdir -p "$output_dir"
srun timeout 10m python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
}
# run or profile
function slaunch() {
run_python "$@"
}
function plaunch() {
profile_python "$@"
}
# Echo des commandes lancees
set -x
# Pour ne pas utiliser le /tmp
export TMPDIR=$JOBSCRATCH
# Pour contourner un bogue dans les versions actuelles de Nsight Systems
# il est également nécessaire de créer un lien symbolique permettant de
# faire pointer le répertoire /tmp/nvidia vers TMPDIR
ln -s $JOBSCRATCH /tmp/nvidia
declare -A pdims_table
# Define the table
pdims_table[1]="1x1"
pdims_table[4]="2x2 1x4 4x1"
pdims_table[8]="2x4 1x8 8x1 4x2"
pdims_table[16]="4x4 1x16 16x1"
pdims_table[32]="4x8 8x4 1x32 32x1"
pdims_table[64]="8x8 16x4 1x64 64x1"
pdims_table[128]="8x16 16x8 1x128 128x1"
pdims_table[256]="16x16 1x256 256x1"
# mpch=(128 256 512 1024 2048 4096)
grid=(256 512 1024 2048 4096 8192)
precisions=(float32 float64)
pdim="${pdims_table[$nb_gpus]}"
solvers=(lpt lfm)
echo "pdims: $pdim"
# Check if pdims is not empty
if [ -z "$pdim" ]; then
echo "pdims is empty"
echo "Number of gpus has to be 8, 16, 32, 64, 128 or 160"
echo "Number of nodes selected: $num_nodes"
echo "Number of gpus per node: $num_gpu_per_node"
exit 1
fi
# GPU name is a100 if num_gpu_per_node is 8, otherwise it is v100
out_dir="pm_prof/$gpu_name/$nb_gpus"
trace_dir="traces/$gpu_name/$nb_gpus/bench_pm"
echo "Output dir is : $out_dir"
echo "Trace dir is : $trace_dir"
for pr in "${precisions[@]}"; do
for g in "${grid[@]}"; do
for solver in "${solvers[@]}"; do
for p in $pdim; do
halo_size=$((g / 4))
slaunch bench_pm.py -m $g -b $g -p $p -hs $halo_size -pr $pr -s $solver -i 4 -o $out_dir -f -n $num_nodes
done
done
# delete crash core dump files
rm -f core.python.*
done
done

View file

@ -1,147 +0,0 @@
#!/bin/bash
##############################################################################################################################
# USAGE:sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 benchmarks/particle_mesh_a100.slurm
##############################################################################################################################
#SBATCH --job-name=Particle-Mesh # nom du job
#SBATCH --cpus-per-task=8 # nombre de CPU par tache pour gpu_p5 (1/8 du noeud 8-GPU)
#SBATCH --hint=nomultithread # hyperthreading desactive
#SBATCH --time=04:00:00 # temps d'execution maximum demande (HH:MM:SS)
#SBATCH --output=%x_%N_a100.out # nom du fichier de sortie
#SBATCH --error=%x_%N_a100.out # nom du fichier d'erreur (ici commun avec la sortie)
#SBATCH --exclusive # ressources dediees
##SBATCH --qos=qos_gpu-dev
# Nettoyage des modules charges en interactif et herites par defaut
num_nodes=$SLURM_JOB_NUM_NODES
num_gpu_per_node=$SLURM_NTASKS_PER_NODE
OUTPUT_FOLDER_ARGS=1
# Calculate the number of GPUs
nb_gpus=$(( num_nodes * num_gpu_per_node))
module purge
echo "Job partition: $SLURM_JOB_PARTITION"
# Decommenter la commande module suivante si vous utilisez la partition "gpu_p5"
# pour avoir acces aux modules compatibles avec cette partition
if [[ "$SLURM_JOB_PARTITION" == "gpu_p5" ]]; then
module load cpuarch/amd
source /gpfsdswork/projects/rech/tkc/commun/venv/a100/bin/activate
gpu_name=a100
else
source /gpfsdswork/projects/rech/tkc/commun/venv/v100/bin/activate
gpu_name=v100
fi
# Chargement des modules
module load nvidia-compilers/23.9 cuda/12.2.0 cudnn/8.9.7.29-cuda openmpi/4.1.5-cuda nccl/2.18.5-1-cuda cmake
module load nvidia-nsight-systems/2024.1.1.59
echo "The number of nodes allocated for this job is: $num_nodes"
echo "The number of GPUs allocated for this job is: $nb_gpus"
export EQX_ON_ERROR=nan
export ENABLE_PERFO_STEP=NVTX
export MPI4JAX_USE_CUDA_MPI=1
function profile_python() {
if [ $# -lt 1 ]; then
echo "Usage: profile_python <python_script> [arguments for the script]"
return 1
fi
local script_name=$(basename "$1" .py)
local output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name"
local report_dir="out_prof/$gpu_name/$nb_gpus/$script_name"
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
local args=$(echo "${@:2}" | tr ' ' '_')
# Remove characters '/' and '-' from folder name
args=$(echo "$args" | tr -d '/-')
output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name/$args"
report_dir="out_prof/$gpu_name/$nb_gpus/$script_name/$args"
fi
mkdir -p "$output_dir"
mkdir -p "$report_dir"
srun timeout 10m nsys profile -t cuda,nvtx,osrt,mpi -o "$report_dir/report_rank%q{SLURM_PROCID}" python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
}
function run_python() {
if [ $# -lt 1 ]; then
echo "Usage: run_python <python_script> [arguments for the script]"
return 1
fi
local script_name=$(basename "$1" .py)
local output_dir="traces/$gpu_name/$nb_gpus/$script_name"
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
local args=$(echo "${@:2}" | tr ' ' '_')
# Remove characters '/' and '-' from folder name
args=$(echo "$args" | tr -d '/-')
output_dir="traces/$gpu_name/$nb_gpus/$script_name/$args"
fi
mkdir -p "$output_dir"
srun timeout 10m python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
}
# run or profile
function slaunch() {
run_python "$@"
}
function plaunch() {
profile_python "$@"
}
# Echo des commandes lancees
set -x
# Pour ne pas utiliser le /tmp
export TMPDIR=$JOBSCRATCH
# Pour contourner un bogue dans les versions actuelles de Nsight Systems
# il est également nécessaire de créer un lien symbolique permettant de
# faire pointer le répertoire /tmp/nvidia vers TMPDIR
ln -s $JOBSCRATCH /tmp/nvidia
# mpch=(128 256 512 1024 2048 4096)
grid=(256 512 1024 2048 4096 8192)
precisions=(float32 float64)
solvers=(lpt lfm)
# GPU name is a100 if num_gpu_per_node is 8, otherwise it is v100
if [ $num_gpu_per_node -eq 8 ]; then
gpu_name="a100"
else
gpu_name="v100"
fi
out_dir="pm_prof/$gpu_name/$nb_gpus"
trace_dir="traces/$gpu_name/$nb_gpus/bench_pmwd"
echo "Output dir is : $out_dir"
echo "Trace dir is : $trace_dir"
for pr in "${precisions[@]}"; do
for g in "${grid[@]}"; do
for solver in "${solvers[@]}"; do
slaunch bench_pmwd.py -m $g -b $g -pr $pr -s $solver -i 4 -o $out_dir -f
done
# delete crash core dump files
rm -f core.python.*
done
done
# # zip the output files and traces
# tar -czvf $out_dir.tar.gz $out_dir
# tar -czvf $trace_dir.tar.gz $trace_dir
# # remove the output files and traces
# rm -rf $out_dir $trace_dir
#

View file

@ -1,19 +0,0 @@
#!/bin/bash
# Run all slurms jobs
nodes_v100=(1 2 4 8 16 32)
nodes_a100=(1 2 4 8 16 32)
for n in ${nodes_v100[@]}; do
sbatch --account=tkc@v100 --nodes=$n --gres=gpu:4 --tasks-per-node=4 -C v100-32g --job-name=JAXPM-$n-N-v100 particle_mesh.slurm
done
for n in ${nodes_a100[@]}; do
sbatch --account=tkc@a100 --nodes=$n --gres=gpu:4 --tasks-per-node=4 -C a100 --job-name=JAXPM-$n-N-a100 particle_mesh.slurm
done
# single GPUs
sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 --job-name=JAXPM-1GPU-V100 particle_mesh.slurm
sbatch --account=tkc@v100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C v100-32g --job-name=JAXPM-1GPU-A100 particle_mesh.slurm
sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 --job-name=PMWD-1GPU-v100 pmwd_pm.slurm
sbatch --account=tkc@v100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C v100-32g --job-name=PMWD-1GPU-a100 pmwd_pm.slurm

View file

@ -10,13 +10,13 @@ import jax.numpy as jnp
import jaxdecomp
from jax import lax
from jax.experimental.shard_map import shard_map
from jax.sharding import Mesh
from jax.sharding import AbstractMesh, Mesh
from jax.sharding import PartitionSpec as P
def autoshmap(
f: Callable,
gpu_mesh: Mesh | None,
gpu_mesh: Mesh | AbstractMesh | None,
in_specs: Specs,
out_specs: Specs,
check_rep: bool = False,
@ -122,7 +122,7 @@ def get_local_shape(mesh_shape, sharding=None):
]
def __axis_names(spec):
def _axis_names(spec):
if len(spec) == 1:
x_axis, = spec
y_axis = None
@ -147,7 +147,7 @@ def uniform_particles(mesh_shape, sharding=None):
if gpu_mesh is not None and not (gpu_mesh.empty):
local_mesh_shape = get_local_shape(mesh_shape, sharding)
spec = sharding.spec
x_axis, y_axis, single_axis = __axis_names(spec)
x_axis, y_axis, single_axis = _axis_names(spec)
def particles():
x_indx = lax.axis_index(x_axis)
@ -178,7 +178,7 @@ def normal_field(mesh_shape, seed, sharding=None):
# to make the code work both in multi host and single controller we can do this trick
keys = jax.random.split(seed, size)
spec = sharding.spec
x_axis, y_axis, single_axis = __axis_names(spec)
x_axis, y_axis, single_axis = _axis_names(spec)
def normal(keys, shape, dtype):
idx = lax.axis_index(x_axis)

View file

@ -3,6 +3,7 @@ from functools import partial
import jax
import jax.lax as lax
import jax.numpy as jnp
from jax.sharding import NamedSharding
from jax.sharding import PartitionSpec as P
from jaxpm.distributed import (autoshmap, fft3d, get_halo_size, halo_exchange,
@ -11,7 +12,7 @@ from jaxpm.kernels import cic_compensation, fftk
from jaxpm.painting_utils import gather, scatter
def cic_paint_impl(grid_mesh, positions, weight=None):
def _cic_paint_impl(grid_mesh, positions, weight=None):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
displacement field: [nx, ny, nz, 3]
@ -54,9 +55,9 @@ def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
halo_size, halo_extents = get_halo_size(halo_size, sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding)
gpu_mesh = sharding.mesh if sharding is not None else None
spec = sharding.spec if sharding is not None else P()
grid_mesh = autoshmap(cic_paint_impl,
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
grid_mesh = autoshmap(_cic_paint_impl,
gpu_mesh=gpu_mesh,
in_specs=(spec, spec, P()),
out_specs=spec)(grid_mesh, positions, weight)
@ -68,7 +69,7 @@ def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
return grid_mesh
def cic_read_impl(grid_mesh, positions):
def _cic_read_impl(grid_mesh, positions):
""" Paints positions onto mesh
mesh: [nx, ny, nz]
positions: [nx,ny,nz, 3]
@ -110,10 +111,10 @@ def cic_read(grid_mesh, positions, halo_size=0, sharding=None):
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
gpu_mesh = sharding.mesh if sharding is not None else None
spec = sharding.spec if sharding is not None else P()
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
displacement = autoshmap(cic_read_impl,
displacement = autoshmap(_cic_read_impl,
gpu_mesh=gpu_mesh,
in_specs=(spec, spec),
out_specs=spec)(grid_mesh, positions)
@ -150,7 +151,7 @@ def cic_paint_2d(mesh, positions, weight):
return mesh
def cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
halo_x, _ = halo_size[0]
halo_y, _ = halo_size[1]
@ -187,9 +188,9 @@ def cic_paint_dx(displacements,
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
gpu_mesh = sharding.mesh if sharding is not None else None
spec = sharding.spec if sharding is not None else P()
grid_mesh = autoshmap(partial(cic_paint_dx_impl,
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
grid_mesh = autoshmap(partial(_cic_paint_dx_impl,
halo_size=halo_size,
weight=weight,
chunk_size=chunk_size),
@ -204,7 +205,7 @@ def cic_paint_dx(displacements,
return grid_mesh
def cic_read_dx_impl(grid_mesh, disp, halo_size):
def _cic_read_dx_impl(grid_mesh, disp, halo_size):
halo_x, _ = halo_size[0]
halo_y, _ = halo_size[1]
@ -233,9 +234,9 @@ def cic_read_dx(grid_mesh, disp, halo_size=0, sharding=None):
grid_mesh = halo_exchange(grid_mesh,
halo_extents=halo_extents,
halo_periods=(True, True))
gpu_mesh = sharding.mesh if sharding is not None else None
spec = sharding.spec if sharding is not None else P()
displacements = autoshmap(partial(cic_read_dx_impl, halo_size=halo_size),
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
displacements = autoshmap(partial(_cic_read_dx_impl, halo_size=halo_size),
gpu_mesh=gpu_mesh,
in_specs=(spec),
out_specs=spec)(grid_mesh, disp)

View file

@ -5,8 +5,8 @@ initialize_distributed() # ignore : E402
import jax # noqa : E402
import jax.numpy as jnp # noqa : E402
import pytest # noqa : E402
from diffrax import (Dopri5, ODETerm, PIDController, SaveAt, # noqa : E402
diffeqsolve)
from diffrax import SaveAt # noqa : E402
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
from helpers import MSE # noqa : E402
from jax import lax # noqa : E402
from jax.experimental.multihost_utils import process_allgather # noqa : E402