mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-04 11:10:53 +00:00
Add aboucaud comments
This commit is contained in:
parent
adaf7d236d
commit
d8c68ace7a
10 changed files with 26 additions and 777 deletions
2
.github/workflows/tests.yml
vendored
2
.github/workflows/tests.yml
vendored
|
@ -29,7 +29,7 @@ jobs:
|
|||
run: |
|
||||
sudo apt-get install -y libopenmpi-dev
|
||||
python -m pip install --upgrade pip
|
||||
pip install jax=0.4.35
|
||||
pip install jax=0.4.35
|
||||
pip install .[test]
|
||||
|
||||
- name: Run Single Device Tests
|
||||
|
|
|
@ -11,7 +11,7 @@ Provide a modern infrastructure to support differentiable PM N-body simulations
|
|||
- Any order forward and backward automatic differentiation
|
||||
- Support automated batching using `vmap`
|
||||
- Compatibility with external optimizer libraries like `optax`
|
||||
- Now fully distributable on **multi-GPU and multi-node** systems using [jaxDecomp](https://github.com/DifferentiableUniverseInitiative/jaxDecomp) working with the latex `JAX v0.4.35`
|
||||
- Now fully distributable on **multi-GPU and multi-node** systems using [jaxDecomp](https://github.com/DifferentiableUniverseInitiative/jaxDecomp) working with`JAX v0.4.35`
|
||||
|
||||
|
||||
## Open development and use
|
||||
|
|
|
@ -1,270 +0,0 @@
|
|||
import os
|
||||
|
||||
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
|
||||
import jax
|
||||
|
||||
jax.distributed.initialize()
|
||||
|
||||
rank = jax.process_index()
|
||||
size = jax.process_count()
|
||||
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import jax.numpy as jnp
|
||||
import jax_cosmo as jc
|
||||
import numpy as np
|
||||
from cupy.cuda.nvtx import RangePop, RangePush
|
||||
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
|
||||
PIDController, SaveAt, Tsit5, diffeqsolve)
|
||||
from hpc_plotter.timer import Timer
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.experimental.multihost_utils import sync_global_devices
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
from jaxpm.kernels import interpolate_power_spectrum
|
||||
from jaxpm.painting import cic_paint_dx
|
||||
from jaxpm.pm import linear_field, lpt, make_ode_fn
|
||||
|
||||
|
||||
def run_simulation(mesh_shape,
|
||||
box_size,
|
||||
halo_size,
|
||||
solver_choice,
|
||||
iterations,
|
||||
hlo_print,
|
||||
trace,
|
||||
pdims=None,
|
||||
output_path="."):
|
||||
|
||||
@jax.jit
|
||||
def simulate(omega_c, sigma8):
|
||||
# Create a small function to generate the matter power spectrum
|
||||
k = jnp.logspace(-4, 1, 128)
|
||||
pk = jc.power.linear_matter_power(
|
||||
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
|
||||
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
|
||||
|
||||
# Create initial conditions
|
||||
initial_conditions = linear_field(mesh_shape,
|
||||
box_size,
|
||||
pk_fn,
|
||||
seed=jax.random.PRNGKey(0))
|
||||
|
||||
# Create particles
|
||||
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
|
||||
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
|
||||
if solver_choice == "Dopri5":
|
||||
solver = Dopri5()
|
||||
elif solver_choice == "LeapfrogMidpoint":
|
||||
solver = LeapfrogMidpoint()
|
||||
elif solver_choice == "Tsit5":
|
||||
solver = Tsit5()
|
||||
elif solver_choice == "lpt":
|
||||
lpt_field = cic_paint_dx(dx, halo_size=halo_size)
|
||||
return lpt_field, {"num_steps": 0}
|
||||
else:
|
||||
raise ValueError(
|
||||
"Invalid solver choice. Use 'Dopri5' or 'LeapfrogMidpoint'.")
|
||||
# Evolve the simulation forward
|
||||
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
|
||||
term = ODETerm(
|
||||
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
|
||||
|
||||
if solver_choice == "Dopri5" or solver_choice == "Tsit5":
|
||||
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
|
||||
elif solver_choice == "LeapfrogMidpoint" or solver_choice == "Euler":
|
||||
stepsize_controller = ConstantStepSize()
|
||||
res = diffeqsolve(term,
|
||||
solver,
|
||||
t0=0.1,
|
||||
t1=1.,
|
||||
dt0=0.01,
|
||||
y0=jnp.stack([dx, p], axis=0),
|
||||
args=cosmo,
|
||||
saveat=SaveAt(t1=True),
|
||||
stepsize_controller=stepsize_controller)
|
||||
|
||||
# Return the simulation volume at requested
|
||||
state = res.ys[-1]
|
||||
final_field = cic_paint_dx(state[0], halo_size=halo_size)
|
||||
|
||||
return final_field, res.stats
|
||||
|
||||
def run():
|
||||
# Warm start
|
||||
chrono_fun = Timer()
|
||||
RangePush("warmup")
|
||||
final_field, stats = chrono_fun.chrono_jit(simulate,
|
||||
0.32,
|
||||
0.8,
|
||||
ndarray_arg=0)
|
||||
RangePop()
|
||||
sync_global_devices("warmup")
|
||||
for i in range(iterations):
|
||||
RangePush(f"sim iter {i}")
|
||||
final_field, stats = chrono_fun.chrono_fun(simulate,
|
||||
0.32,
|
||||
0.8,
|
||||
ndarray_arg=0)
|
||||
RangePop()
|
||||
return final_field, stats, chrono_fun
|
||||
|
||||
if jax.device_count() > 1:
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('x', 'y'))
|
||||
with mesh:
|
||||
# Warm start
|
||||
final_field, stats, chrono_fun = run()
|
||||
else:
|
||||
final_field, stats, chrono_fun = run()
|
||||
|
||||
return final_field, stats, chrono_fun
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='JAX Cosmo Simulation Benchmark')
|
||||
parser.add_argument('-m',
|
||||
'--mesh_size',
|
||||
type=int,
|
||||
help='Mesh size',
|
||||
required=True)
|
||||
parser.add_argument('-b',
|
||||
'--box_size',
|
||||
type=float,
|
||||
help='Box size',
|
||||
required=True)
|
||||
parser.add_argument('-p',
|
||||
'--pdims',
|
||||
type=str,
|
||||
help='Processor dimensions',
|
||||
default=None)
|
||||
parser.add_argument(
|
||||
'-pr',
|
||||
'--precision',
|
||||
type=str,
|
||||
help='Precision',
|
||||
choices=["float32", "float64"],
|
||||
)
|
||||
parser.add_argument('-hs',
|
||||
'--halo_size',
|
||||
type=int,
|
||||
help='Halo size',
|
||||
default=None)
|
||||
parser.add_argument('-s',
|
||||
'--solver',
|
||||
type=str,
|
||||
help='Solver',
|
||||
choices=[
|
||||
"Dopri5", "dopri5", "d5", "Tsit5", "tsit5", "t5",
|
||||
"LeapfrogMidpoint", "leapfrogmidpoint", "lfm",
|
||||
"lpt"
|
||||
],
|
||||
default="lpt")
|
||||
parser.add_argument('-o',
|
||||
'--output_path',
|
||||
type=str,
|
||||
help='Output path',
|
||||
default=".")
|
||||
parser.add_argument('-f',
|
||||
'--save_fields',
|
||||
action='store_true',
|
||||
help='Save fields')
|
||||
parser.add_argument('-n',
|
||||
'--nodes',
|
||||
type=int,
|
||||
help='Number of nodes',
|
||||
default=1)
|
||||
args = parser.parse_args()
|
||||
mesh_size = args.mesh_size
|
||||
box_size = [args.box_size] * 3
|
||||
halo_size = args.mesh_size // 8 if args.halo_size is None else args.halo_size
|
||||
solver_choice = args.solver
|
||||
iterations = args.iterations
|
||||
output_path = args.output_path
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
|
||||
print(f"solver choice: {solver_choice}")
|
||||
match solver_choice:
|
||||
case "Dopri5" | "dopri5" | "d5":
|
||||
solver_choice = "Dopri5"
|
||||
case "Tsit5" | "tsit5" | "t5":
|
||||
solver_choice = "Tsit5"
|
||||
case "LeapfrogMidpoint" | "leapfrogmidpoint" | "lfm":
|
||||
solver_choice = "LeapfrogMidpoint"
|
||||
case "lpt":
|
||||
solver_choice = "lpt"
|
||||
case _:
|
||||
raise ValueError(
|
||||
"Invalid solver choice. Use 'Dopri5', 'Tsit5', 'LeapfrogMidpoint' or 'lpt"
|
||||
)
|
||||
if args.precision == "float32":
|
||||
jax.config.update("jax_enable_x64", False)
|
||||
elif args.precision == "float64":
|
||||
jax.config.update("jax_enable_x64", True)
|
||||
|
||||
if args.pdims:
|
||||
pdims = tuple(map(int, args.pdims.split("x")))
|
||||
else:
|
||||
pdims = (1, jax.device_count())
|
||||
pdm_str = f"{pdims[0]}x{pdims[1]}"
|
||||
|
||||
mesh_shape = [mesh_size] * 3
|
||||
|
||||
final_field, stats, chrono_fun = run_simulation(mesh_shape, box_size,
|
||||
halo_size, solver_choice,
|
||||
iterations, pdims)
|
||||
|
||||
print(
|
||||
f"shape of final_field {final_field.shape} and sharding spec {final_field.sharding} and local shape {final_field.addressable_data(0).shape}"
|
||||
)
|
||||
|
||||
metadata = {
|
||||
'rank': rank,
|
||||
'function_name': f'JAXPM-{solver_choice}',
|
||||
'precision': args.precision,
|
||||
'x': str(mesh_size),
|
||||
'y': str(mesh_size),
|
||||
'z': str(stats["num_steps"]),
|
||||
'px': str(pdims[0]),
|
||||
'py': str(pdims[1]),
|
||||
'backend': 'NCCL',
|
||||
'nodes': str(args.nodes)
|
||||
}
|
||||
# Print the results to a CSV file
|
||||
chrono_fun.print_to_csv(f'{output_path}/jaxpm_benchmark.csv', **metadata)
|
||||
|
||||
# Save the final field
|
||||
nb_gpus = jax.device_count()
|
||||
pdm_str = f"{pdims[0]}x{pdims[1]}"
|
||||
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
|
||||
os.makedirs(field_folder, exist_ok=True)
|
||||
with open(f'{field_folder}/jaxpm.log', 'w') as f:
|
||||
f.write(f"Args: {args}\n")
|
||||
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
|
||||
for i, time in enumerate(chrono_fun.times):
|
||||
f.write(f"Time {i}: {time:.4f} ms\n")
|
||||
f.write(f"Stats: {stats}\n")
|
||||
if args.save_fields:
|
||||
np.save(f'{field_folder}/final_field_0_{rank}.npy',
|
||||
final_field.addressable_data(0))
|
||||
|
||||
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
|
||||
os.makedirs(field_folder, exist_ok=True)
|
||||
with open(f'{field_folder}/jaxpm.log', 'w') as f:
|
||||
f.write(f"Args: {args}\n")
|
||||
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
|
||||
for i, time in enumerate(chrono_fun.times):
|
||||
f.write(f"Time {i}: {time:.4f} ms\n")
|
||||
f.write(f"Stats: {stats}\n")
|
||||
if args.save_fields:
|
||||
np.save(f'{field_folder}/final_field_0_{rank}.npy',
|
||||
final_field.addressable_data(0))
|
||||
|
||||
print(f"Finished! ")
|
||||
print(f"Stats {stats}")
|
||||
print(f"Saving to {output_path}/jax_pm_benchmark.csv")
|
||||
print(f"Saving field and logs in {field_folder}")
|
|
@ -1,159 +0,0 @@
|
|||
import os
|
||||
|
||||
# Change JAX GPU memory preallocation fraction
|
||||
os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '.95'
|
||||
|
||||
import argparse
|
||||
|
||||
import jax
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from hpc_plotter.timer import Timer
|
||||
from pmwd import (Configuration, Cosmology, SimpleLCDM, boltzmann, growth,
|
||||
linear_modes, linear_power, lpt, nbody, scatter, white_noise)
|
||||
from pmwd.pm_util import fftinv
|
||||
from pmwd.spec_util import powspec
|
||||
from pmwd.vis_util import simshow
|
||||
|
||||
|
||||
# Simulation configuration
|
||||
def run_pmwd_simulation(ptcl_grid_shape, ptcl_spacing, solver, iterations):
|
||||
|
||||
@jax.jit
|
||||
def simulate(omega_m, sigma8):
|
||||
|
||||
conf = Configuration(ptcl_spacing,
|
||||
ptcl_grid_shape=ptcl_grid_shape,
|
||||
mesh_shape=1,
|
||||
lpt_order=1,
|
||||
a_nbody_maxstep=1 / 91)
|
||||
print(conf)
|
||||
print(
|
||||
f'Simulating {conf.ptcl_num} particles with a {conf.mesh_shape} mesh for {conf.a_nbody_num} time steps.'
|
||||
)
|
||||
|
||||
cosmo = Cosmology(conf,
|
||||
A_s_1e9=2.0,
|
||||
n_s=0.96,
|
||||
Omega_m=omega_m,
|
||||
Omega_b=sigma8,
|
||||
h=0.7)
|
||||
print(cosmo)
|
||||
|
||||
# Boltzmann calculation
|
||||
cosmo = boltzmann(cosmo, conf)
|
||||
print("Boltzmann calculation completed.")
|
||||
|
||||
# Generate white noise field and scale with the linear power spectrum
|
||||
seed = 0
|
||||
modes = white_noise(seed, conf)
|
||||
modes = linear_modes(modes, cosmo, conf)
|
||||
print("Linear modes generated.")
|
||||
|
||||
# Solve LPT at some early time
|
||||
ptcl, obsvbl = lpt(modes, cosmo, conf)
|
||||
print("LPT solved.")
|
||||
|
||||
if solver == "lfm":
|
||||
# N-body time integration from LPT initial conditions
|
||||
ptcl, obsvbl = jax.block_until_ready(
|
||||
nbody(ptcl, obsvbl, cosmo, conf))
|
||||
print("N-body time integration completed.")
|
||||
|
||||
# Scatter particles to mesh to get the density field
|
||||
dens = scatter(ptcl, conf)
|
||||
return dens
|
||||
|
||||
chrono_timer = Timer()
|
||||
final_field = chrono_timer.chrono_jit(simulate, 0.3, 0.05)
|
||||
|
||||
for _ in range(iterations):
|
||||
final_field = chrono_timer.chrono_fun(simulate, 0.3, 0.05)
|
||||
|
||||
return final_field, chrono_timer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description='PMWD Simulation')
|
||||
parser.add_argument('-m',
|
||||
'--mesh_size',
|
||||
type=int,
|
||||
help='Mesh size',
|
||||
required=True)
|
||||
parser.add_argument('-b',
|
||||
'--box_size',
|
||||
type=float,
|
||||
help='Box size',
|
||||
required=True)
|
||||
parser.add_argument('-i',
|
||||
'--iterations',
|
||||
type=int,
|
||||
help='Number of iterations',
|
||||
default=10)
|
||||
parser.add_argument('-o',
|
||||
'--output_path',
|
||||
type=str,
|
||||
help='Output path',
|
||||
default=".")
|
||||
parser.add_argument('-f',
|
||||
'--save_fields',
|
||||
action='store_true',
|
||||
help='Save fields')
|
||||
parser.add_argument('-s',
|
||||
'--solver',
|
||||
type=str,
|
||||
help='Solver',
|
||||
choices=["lfm", "lpt"])
|
||||
parser.add_argument(
|
||||
'-pr',
|
||||
'--precision',
|
||||
type=str,
|
||||
help='Precision',
|
||||
choices=["float32", "float64"],
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
mesh_shape = [args.mesh_size] * 3
|
||||
ptcl_spacing = args.box_size / args.mesh_size
|
||||
iterations = args.iterations
|
||||
solver = args.solver
|
||||
output_path = args.output_path
|
||||
if args.precision == "float32":
|
||||
jax.config.update("jax_enable_x64", False)
|
||||
elif args.precision == "float64":
|
||||
jax.config.update("jax_enable_x64", True)
|
||||
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
|
||||
final_field, chrono_fun = run_pmwd_simulation(mesh_shape, ptcl_spacing,
|
||||
solver, iterations)
|
||||
print("PMWD simulation completed.")
|
||||
|
||||
metadata = {
|
||||
'rank': 0,
|
||||
'function_name': f'PMWD-{solver}',
|
||||
'precision': args.precision,
|
||||
'x': str(mesh_shape[0]),
|
||||
'y': str(mesh_shape[0]),
|
||||
'z': str(mesh_shape[0]),
|
||||
'px': "1",
|
||||
'py': "1",
|
||||
'backend': 'NCCL',
|
||||
'nodes': "1"
|
||||
}
|
||||
chrono_fun.print_to_csv(f"{output_path}/pmwd.csv", **metadata)
|
||||
field_folder = f"{output_path}/final_field/pmwd/1/{args.mesh_size}_{int(args.box_size)}/1x1/{args.solver}/halo_0"
|
||||
os.makedirs(field_folder, exist_ok=True)
|
||||
with open(f"{field_folder}/pmwd.log", "w") as f:
|
||||
f.write(f"PMWD simulation completed.\n")
|
||||
f.write(f"Args : {args}\n")
|
||||
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
|
||||
for i, time in enumerate(chrono_fun.times):
|
||||
f.write(f"Time {i}: {time:.4f} ms\n")
|
||||
if args.save_fields:
|
||||
np.save(f"{field_folder}/final_field_0_0.npy", final_field)
|
||||
print("Fields saved.")
|
||||
|
||||
print(f"saving to {output_path}/pmwd.csv")
|
||||
print(f"saving field and logs to {field_folder}/pmwd.log")
|
|
@ -1,157 +0,0 @@
|
|||
#!/bin/bash
|
||||
##############################################################################################################################
|
||||
# USAGE:sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 benchmarks/particle_mesh_a100.slurm
|
||||
##############################################################################################################################
|
||||
#SBATCH --job-name=Particle-Mesh # nom du job
|
||||
#SBATCH --cpus-per-task=8 # nombre de CPU par tache pour gpu_p5 (1/8 du noeud 8-GPU)
|
||||
#SBATCH --hint=nomultithread # hyperthreading desactive
|
||||
#SBATCH --time=04:00:00 # temps d'execution maximum demande (HH:MM:SS)
|
||||
#SBATCH --output=%x_%N_a100.out # nom du fichier de sortie
|
||||
#SBATCH --error=%x_%N_a100.err # nom du fichier d'erreur (ici commun avec la sortie)
|
||||
#SBATCH --exclusive # ressources dediees
|
||||
##SBATCH --qos=qos_gpu-dev
|
||||
# Nettoyage des modules charges en interactif et herites par defaut
|
||||
num_nodes=$SLURM_JOB_NUM_NODES
|
||||
num_gpu_per_node=$SLURM_NTASKS_PER_NODE
|
||||
OUTPUT_FOLDER_ARGS=1
|
||||
# Calculate the number of GPUs
|
||||
nb_gpus=$(( num_nodes * num_gpu_per_node))
|
||||
|
||||
module purge
|
||||
|
||||
echo "Job partition: $SLURM_JOB_PARTITION"
|
||||
# Decommenter la commande module suivante si vous utilisez la partition "gpu_p5"
|
||||
# pour avoir acces aux modules compatibles avec cette partition
|
||||
|
||||
if [[ "$SLURM_JOB_PARTITION" == "gpu_p5" ]]; then
|
||||
module load cpuarch/amd
|
||||
source /gpfsdswork/projects/rech/tkc/commun/venv/a100/bin/activate
|
||||
gpu_name=a100
|
||||
else
|
||||
source /gpfsdswork/projects/rech/tkc/commun/venv/v100/bin/activate
|
||||
gpu_name=v100
|
||||
fi
|
||||
|
||||
# Chargement des modules
|
||||
module load nvidia-compilers/23.9 cuda/12.2.0 cudnn/8.9.7.29-cuda openmpi/4.1.5-cuda nccl/2.18.5-1-cuda cmake
|
||||
module load nvidia-nsight-systems/2024.1.1.59
|
||||
|
||||
|
||||
echo "The number of nodes allocated for this job is: $num_nodes"
|
||||
echo "The number of GPUs allocated for this job is: $nb_gpus"
|
||||
|
||||
export EQX_ON_ERROR=nan
|
||||
export ENABLE_PERFO_STEP=NVTX
|
||||
export MPI4JAX_USE_CUDA_MPI=1
|
||||
|
||||
function profile_python() {
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: profile_python <python_script> [arguments for the script]"
|
||||
return 1
|
||||
fi
|
||||
|
||||
local script_name=$(basename "$1" .py)
|
||||
local output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name"
|
||||
local report_dir="out_prof/$gpu_name/$nb_gpus/$script_name"
|
||||
|
||||
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
||||
local args=$(echo "${@:2}" | tr ' ' '_')
|
||||
# Remove characters '/' and '-' from folder name
|
||||
args=$(echo "$args" | tr -d '/-')
|
||||
output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name/$args"
|
||||
report_dir="out_prof/$gpu_name/$nb_gpus/$script_name/$args"
|
||||
fi
|
||||
|
||||
mkdir -p "$output_dir"
|
||||
mkdir -p "$report_dir"
|
||||
|
||||
srun timeout 10m nsys profile -t cuda,nvtx,osrt,mpi -o "$report_dir/report_rank%q{SLURM_PROCID}" python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
||||
}
|
||||
|
||||
function run_python() {
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: run_python <python_script> [arguments for the script]"
|
||||
return 1
|
||||
fi
|
||||
|
||||
local script_name=$(basename "$1" .py)
|
||||
local output_dir="traces/$gpu_name/$nb_gpus/$script_name"
|
||||
|
||||
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
||||
local args=$(echo "${@:2}" | tr ' ' '_')
|
||||
# Remove characters '/' and '-' from folder name
|
||||
args=$(echo "$args" | tr -d '/-')
|
||||
output_dir="traces/$gpu_name/$nb_gpus/$script_name/$args"
|
||||
fi
|
||||
|
||||
mkdir -p "$output_dir"
|
||||
|
||||
srun timeout 10m python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
||||
}
|
||||
|
||||
|
||||
# run or profile
|
||||
|
||||
function slaunch() {
|
||||
run_python "$@"
|
||||
}
|
||||
|
||||
function plaunch() {
|
||||
profile_python "$@"
|
||||
}
|
||||
|
||||
# Echo des commandes lancees
|
||||
set -x
|
||||
|
||||
# Pour ne pas utiliser le /tmp
|
||||
export TMPDIR=$JOBSCRATCH
|
||||
# Pour contourner un bogue dans les versions actuelles de Nsight Systems
|
||||
# il est également nécessaire de créer un lien symbolique permettant de
|
||||
# faire pointer le répertoire /tmp/nvidia vers TMPDIR
|
||||
ln -s $JOBSCRATCH /tmp/nvidia
|
||||
|
||||
declare -A pdims_table
|
||||
# Define the table
|
||||
pdims_table[1]="1x1"
|
||||
pdims_table[4]="2x2 1x4 4x1"
|
||||
pdims_table[8]="2x4 1x8 8x1 4x2"
|
||||
pdims_table[16]="4x4 1x16 16x1"
|
||||
pdims_table[32]="4x8 8x4 1x32 32x1"
|
||||
pdims_table[64]="8x8 16x4 1x64 64x1"
|
||||
pdims_table[128]="8x16 16x8 1x128 128x1"
|
||||
pdims_table[256]="16x16 1x256 256x1"
|
||||
|
||||
# mpch=(128 256 512 1024 2048 4096)
|
||||
grid=(256 512 1024 2048 4096 8192)
|
||||
precisions=(float32 float64)
|
||||
pdim="${pdims_table[$nb_gpus]}"
|
||||
solvers=(lpt lfm)
|
||||
echo "pdims: $pdim"
|
||||
|
||||
# Check if pdims is not empty
|
||||
if [ -z "$pdim" ]; then
|
||||
echo "pdims is empty"
|
||||
echo "Number of gpus has to be 8, 16, 32, 64, 128 or 160"
|
||||
echo "Number of nodes selected: $num_nodes"
|
||||
echo "Number of gpus per node: $num_gpu_per_node"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# GPU name is a100 if num_gpu_per_node is 8, otherwise it is v100
|
||||
out_dir="pm_prof/$gpu_name/$nb_gpus"
|
||||
trace_dir="traces/$gpu_name/$nb_gpus/bench_pm"
|
||||
echo "Output dir is : $out_dir"
|
||||
echo "Trace dir is : $trace_dir"
|
||||
|
||||
for pr in "${precisions[@]}"; do
|
||||
for g in "${grid[@]}"; do
|
||||
for solver in "${solvers[@]}"; do
|
||||
for p in $pdim; do
|
||||
halo_size=$((g / 4))
|
||||
slaunch bench_pm.py -m $g -b $g -p $p -hs $halo_size -pr $pr -s $solver -i 4 -o $out_dir -f -n $num_nodes
|
||||
done
|
||||
done
|
||||
# delete crash core dump files
|
||||
rm -f core.python.*
|
||||
done
|
||||
done
|
|
@ -1,147 +0,0 @@
|
|||
#!/bin/bash
|
||||
##############################################################################################################################
|
||||
# USAGE:sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 benchmarks/particle_mesh_a100.slurm
|
||||
##############################################################################################################################
|
||||
#SBATCH --job-name=Particle-Mesh # nom du job
|
||||
#SBATCH --cpus-per-task=8 # nombre de CPU par tache pour gpu_p5 (1/8 du noeud 8-GPU)
|
||||
#SBATCH --hint=nomultithread # hyperthreading desactive
|
||||
#SBATCH --time=04:00:00 # temps d'execution maximum demande (HH:MM:SS)
|
||||
#SBATCH --output=%x_%N_a100.out # nom du fichier de sortie
|
||||
#SBATCH --error=%x_%N_a100.out # nom du fichier d'erreur (ici commun avec la sortie)
|
||||
#SBATCH --exclusive # ressources dediees
|
||||
##SBATCH --qos=qos_gpu-dev
|
||||
# Nettoyage des modules charges en interactif et herites par defaut
|
||||
num_nodes=$SLURM_JOB_NUM_NODES
|
||||
num_gpu_per_node=$SLURM_NTASKS_PER_NODE
|
||||
OUTPUT_FOLDER_ARGS=1
|
||||
# Calculate the number of GPUs
|
||||
nb_gpus=$(( num_nodes * num_gpu_per_node))
|
||||
|
||||
module purge
|
||||
|
||||
echo "Job partition: $SLURM_JOB_PARTITION"
|
||||
# Decommenter la commande module suivante si vous utilisez la partition "gpu_p5"
|
||||
# pour avoir acces aux modules compatibles avec cette partition
|
||||
|
||||
if [[ "$SLURM_JOB_PARTITION" == "gpu_p5" ]]; then
|
||||
module load cpuarch/amd
|
||||
source /gpfsdswork/projects/rech/tkc/commun/venv/a100/bin/activate
|
||||
gpu_name=a100
|
||||
else
|
||||
source /gpfsdswork/projects/rech/tkc/commun/venv/v100/bin/activate
|
||||
gpu_name=v100
|
||||
fi
|
||||
|
||||
# Chargement des modules
|
||||
module load nvidia-compilers/23.9 cuda/12.2.0 cudnn/8.9.7.29-cuda openmpi/4.1.5-cuda nccl/2.18.5-1-cuda cmake
|
||||
module load nvidia-nsight-systems/2024.1.1.59
|
||||
|
||||
|
||||
echo "The number of nodes allocated for this job is: $num_nodes"
|
||||
echo "The number of GPUs allocated for this job is: $nb_gpus"
|
||||
|
||||
export EQX_ON_ERROR=nan
|
||||
export ENABLE_PERFO_STEP=NVTX
|
||||
export MPI4JAX_USE_CUDA_MPI=1
|
||||
|
||||
function profile_python() {
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: profile_python <python_script> [arguments for the script]"
|
||||
return 1
|
||||
fi
|
||||
|
||||
local script_name=$(basename "$1" .py)
|
||||
local output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name"
|
||||
local report_dir="out_prof/$gpu_name/$nb_gpus/$script_name"
|
||||
|
||||
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
||||
local args=$(echo "${@:2}" | tr ' ' '_')
|
||||
# Remove characters '/' and '-' from folder name
|
||||
args=$(echo "$args" | tr -d '/-')
|
||||
output_dir="prof_traces/$gpu_name/$nb_gpus/$script_name/$args"
|
||||
report_dir="out_prof/$gpu_name/$nb_gpus/$script_name/$args"
|
||||
fi
|
||||
|
||||
mkdir -p "$output_dir"
|
||||
mkdir -p "$report_dir"
|
||||
|
||||
srun timeout 10m nsys profile -t cuda,nvtx,osrt,mpi -o "$report_dir/report_rank%q{SLURM_PROCID}" python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
||||
}
|
||||
|
||||
function run_python() {
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: run_python <python_script> [arguments for the script]"
|
||||
return 1
|
||||
fi
|
||||
|
||||
local script_name=$(basename "$1" .py)
|
||||
local output_dir="traces/$gpu_name/$nb_gpus/$script_name"
|
||||
|
||||
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
||||
local args=$(echo "${@:2}" | tr ' ' '_')
|
||||
# Remove characters '/' and '-' from folder name
|
||||
args=$(echo "$args" | tr -d '/-')
|
||||
output_dir="traces/$gpu_name/$nb_gpus/$script_name/$args"
|
||||
fi
|
||||
|
||||
mkdir -p "$output_dir"
|
||||
|
||||
srun timeout 10m python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
||||
}
|
||||
|
||||
|
||||
|
||||
# run or profile
|
||||
|
||||
function slaunch() {
|
||||
run_python "$@"
|
||||
}
|
||||
|
||||
function plaunch() {
|
||||
profile_python "$@"
|
||||
}
|
||||
|
||||
# Echo des commandes lancees
|
||||
set -x
|
||||
|
||||
# Pour ne pas utiliser le /tmp
|
||||
export TMPDIR=$JOBSCRATCH
|
||||
# Pour contourner un bogue dans les versions actuelles de Nsight Systems
|
||||
# il est également nécessaire de créer un lien symbolique permettant de
|
||||
# faire pointer le répertoire /tmp/nvidia vers TMPDIR
|
||||
ln -s $JOBSCRATCH /tmp/nvidia
|
||||
|
||||
# mpch=(128 256 512 1024 2048 4096)
|
||||
grid=(256 512 1024 2048 4096 8192)
|
||||
precisions=(float32 float64)
|
||||
solvers=(lpt lfm)
|
||||
|
||||
# GPU name is a100 if num_gpu_per_node is 8, otherwise it is v100
|
||||
|
||||
if [ $num_gpu_per_node -eq 8 ]; then
|
||||
gpu_name="a100"
|
||||
else
|
||||
gpu_name="v100"
|
||||
fi
|
||||
|
||||
out_dir="pm_prof/$gpu_name/$nb_gpus"
|
||||
trace_dir="traces/$gpu_name/$nb_gpus/bench_pmwd"
|
||||
echo "Output dir is : $out_dir"
|
||||
echo "Trace dir is : $trace_dir"
|
||||
|
||||
for pr in "${precisions[@]}"; do
|
||||
for g in "${grid[@]}"; do
|
||||
for solver in "${solvers[@]}"; do
|
||||
slaunch bench_pmwd.py -m $g -b $g -pr $pr -s $solver -i 4 -o $out_dir -f
|
||||
done
|
||||
# delete crash core dump files
|
||||
rm -f core.python.*
|
||||
done
|
||||
done
|
||||
|
||||
# # zip the output files and traces
|
||||
# tar -czvf $out_dir.tar.gz $out_dir
|
||||
# tar -czvf $trace_dir.tar.gz $trace_dir
|
||||
# # remove the output files and traces
|
||||
# rm -rf $out_dir $trace_dir
|
||||
#
|
|
@ -1,19 +0,0 @@
|
|||
#!/bin/bash
|
||||
# Run all slurms jobs
|
||||
nodes_v100=(1 2 4 8 16 32)
|
||||
nodes_a100=(1 2 4 8 16 32)
|
||||
|
||||
|
||||
for n in ${nodes_v100[@]}; do
|
||||
sbatch --account=tkc@v100 --nodes=$n --gres=gpu:4 --tasks-per-node=4 -C v100-32g --job-name=JAXPM-$n-N-v100 particle_mesh.slurm
|
||||
done
|
||||
|
||||
for n in ${nodes_a100[@]}; do
|
||||
sbatch --account=tkc@a100 --nodes=$n --gres=gpu:4 --tasks-per-node=4 -C a100 --job-name=JAXPM-$n-N-a100 particle_mesh.slurm
|
||||
done
|
||||
|
||||
# single GPUs
|
||||
sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 --job-name=JAXPM-1GPU-V100 particle_mesh.slurm
|
||||
sbatch --account=tkc@v100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C v100-32g --job-name=JAXPM-1GPU-A100 particle_mesh.slurm
|
||||
sbatch --account=tkc@a100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C a100 --job-name=PMWD-1GPU-v100 pmwd_pm.slurm
|
||||
sbatch --account=tkc@v100 --nodes=1 --gres=gpu:1 --tasks-per-node=1 -C v100-32g --job-name=PMWD-1GPU-a100 pmwd_pm.slurm
|
|
@ -10,13 +10,13 @@ import jax.numpy as jnp
|
|||
import jaxdecomp
|
||||
from jax import lax
|
||||
from jax.experimental.shard_map import shard_map
|
||||
from jax.sharding import Mesh
|
||||
from jax.sharding import AbstractMesh, Mesh
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
|
||||
def autoshmap(
|
||||
f: Callable,
|
||||
gpu_mesh: Mesh | None,
|
||||
gpu_mesh: Mesh | AbstractMesh | None,
|
||||
in_specs: Specs,
|
||||
out_specs: Specs,
|
||||
check_rep: bool = False,
|
||||
|
@ -122,7 +122,7 @@ def get_local_shape(mesh_shape, sharding=None):
|
|||
]
|
||||
|
||||
|
||||
def __axis_names(spec):
|
||||
def _axis_names(spec):
|
||||
if len(spec) == 1:
|
||||
x_axis, = spec
|
||||
y_axis = None
|
||||
|
@ -147,7 +147,7 @@ def uniform_particles(mesh_shape, sharding=None):
|
|||
if gpu_mesh is not None and not (gpu_mesh.empty):
|
||||
local_mesh_shape = get_local_shape(mesh_shape, sharding)
|
||||
spec = sharding.spec
|
||||
x_axis, y_axis, single_axis = __axis_names(spec)
|
||||
x_axis, y_axis, single_axis = _axis_names(spec)
|
||||
|
||||
def particles():
|
||||
x_indx = lax.axis_index(x_axis)
|
||||
|
@ -178,7 +178,7 @@ def normal_field(mesh_shape, seed, sharding=None):
|
|||
# to make the code work both in multi host and single controller we can do this trick
|
||||
keys = jax.random.split(seed, size)
|
||||
spec = sharding.spec
|
||||
x_axis, y_axis, single_axis = __axis_names(spec)
|
||||
x_axis, y_axis, single_axis = _axis_names(spec)
|
||||
|
||||
def normal(keys, shape, dtype):
|
||||
idx = lax.axis_index(x_axis)
|
||||
|
|
|
@ -3,6 +3,7 @@ from functools import partial
|
|||
import jax
|
||||
import jax.lax as lax
|
||||
import jax.numpy as jnp
|
||||
from jax.sharding import NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
from jaxpm.distributed import (autoshmap, fft3d, get_halo_size, halo_exchange,
|
||||
|
@ -11,7 +12,7 @@ from jaxpm.kernels import cic_compensation, fftk
|
|||
from jaxpm.painting_utils import gather, scatter
|
||||
|
||||
|
||||
def cic_paint_impl(grid_mesh, positions, weight=None):
|
||||
def _cic_paint_impl(grid_mesh, positions, weight=None):
|
||||
""" Paints positions onto mesh
|
||||
mesh: [nx, ny, nz]
|
||||
displacement field: [nx, ny, nz, 3]
|
||||
|
@ -54,9 +55,9 @@ def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
|
|||
halo_size, halo_extents = get_halo_size(halo_size, sharding)
|
||||
grid_mesh = slice_pad(grid_mesh, halo_size, sharding)
|
||||
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
spec = sharding.spec if sharding is not None else P()
|
||||
grid_mesh = autoshmap(cic_paint_impl,
|
||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||
grid_mesh = autoshmap(_cic_paint_impl,
|
||||
gpu_mesh=gpu_mesh,
|
||||
in_specs=(spec, spec, P()),
|
||||
out_specs=spec)(grid_mesh, positions, weight)
|
||||
|
@ -68,7 +69,7 @@ def cic_paint(grid_mesh, positions, weight=None, halo_size=0, sharding=None):
|
|||
return grid_mesh
|
||||
|
||||
|
||||
def cic_read_impl(grid_mesh, positions):
|
||||
def _cic_read_impl(grid_mesh, positions):
|
||||
""" Paints positions onto mesh
|
||||
mesh: [nx, ny, nz]
|
||||
positions: [nx,ny,nz, 3]
|
||||
|
@ -110,10 +111,10 @@ def cic_read(grid_mesh, positions, halo_size=0, sharding=None):
|
|||
grid_mesh = halo_exchange(grid_mesh,
|
||||
halo_extents=halo_extents,
|
||||
halo_periods=(True, True))
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
spec = sharding.spec if sharding is not None else P()
|
||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||
|
||||
displacement = autoshmap(cic_read_impl,
|
||||
displacement = autoshmap(_cic_read_impl,
|
||||
gpu_mesh=gpu_mesh,
|
||||
in_specs=(spec, spec),
|
||||
out_specs=spec)(grid_mesh, positions)
|
||||
|
@ -150,7 +151,7 @@ def cic_paint_2d(mesh, positions, weight):
|
|||
return mesh
|
||||
|
||||
|
||||
def cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
|
||||
def _cic_paint_dx_impl(displacements, halo_size, weight=1., chunk_size=2**24):
|
||||
|
||||
halo_x, _ = halo_size[0]
|
||||
halo_y, _ = halo_size[1]
|
||||
|
@ -187,9 +188,9 @@ def cic_paint_dx(displacements,
|
|||
|
||||
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
|
||||
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
spec = sharding.spec if sharding is not None else P()
|
||||
grid_mesh = autoshmap(partial(cic_paint_dx_impl,
|
||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||
grid_mesh = autoshmap(partial(_cic_paint_dx_impl,
|
||||
halo_size=halo_size,
|
||||
weight=weight,
|
||||
chunk_size=chunk_size),
|
||||
|
@ -204,7 +205,7 @@ def cic_paint_dx(displacements,
|
|||
return grid_mesh
|
||||
|
||||
|
||||
def cic_read_dx_impl(grid_mesh, disp, halo_size):
|
||||
def _cic_read_dx_impl(grid_mesh, disp, halo_size):
|
||||
|
||||
halo_x, _ = halo_size[0]
|
||||
halo_y, _ = halo_size[1]
|
||||
|
@ -233,9 +234,9 @@ def cic_read_dx(grid_mesh, disp, halo_size=0, sharding=None):
|
|||
grid_mesh = halo_exchange(grid_mesh,
|
||||
halo_extents=halo_extents,
|
||||
halo_periods=(True, True))
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
spec = sharding.spec if sharding is not None else P()
|
||||
displacements = autoshmap(partial(cic_read_dx_impl, halo_size=halo_size),
|
||||
gpu_mesh = sharding.mesh if isinstance(sharding, NamedSharding) else None
|
||||
spec = sharding.spec if isinstance(sharding, NamedSharding) else P()
|
||||
displacements = autoshmap(partial(_cic_read_dx_impl, halo_size=halo_size),
|
||||
gpu_mesh=gpu_mesh,
|
||||
in_specs=(spec),
|
||||
out_specs=spec)(grid_mesh, disp)
|
||||
|
|
|
@ -5,8 +5,8 @@ initialize_distributed() # ignore : E402
|
|||
import jax # noqa : E402
|
||||
import jax.numpy as jnp # noqa : E402
|
||||
import pytest # noqa : E402
|
||||
from diffrax import (Dopri5, ODETerm, PIDController, SaveAt, # noqa : E402
|
||||
diffeqsolve)
|
||||
from diffrax import SaveAt # noqa : E402
|
||||
from diffrax import Dopri5, ODETerm, PIDController, diffeqsolve
|
||||
from helpers import MSE # noqa : E402
|
||||
from jax import lax # noqa : E402
|
||||
from jax.experimental.multihost_utils import process_allgather # noqa : E402
|
||||
|
|
Loading…
Add table
Reference in a new issue