mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-02-23 10:00:54 +00:00
update jaxdecomp version and test gradients
This commit is contained in:
parent
d81a2529e7
commit
b132a0e2aa
2 changed files with 116 additions and 1 deletions
|
@ -11,7 +11,7 @@ readme = "README.md"
|
|||
requires-python = ">=3.9"
|
||||
license = { file = "LICENSE" }
|
||||
urls = { "Homepage" = "https://github.com/DifferentiableUniverseInitiative/JaxPM" }
|
||||
dependencies = ["jax_cosmo", "jax>=0.4.30", "jaxdecomp>=0.2.2"]
|
||||
dependencies = ["jax_cosmo", "jax>=0.4.35", "jaxdecomp>=0.2.3"]
|
||||
|
||||
[tool.setuptools]
|
||||
packages = ["jaxpm"]
|
||||
|
|
115
tests/test_gradients.py
Normal file
115
tests/test_gradients.py
Normal file
|
@ -0,0 +1,115 @@
|
|||
import pytest
|
||||
from diffrax import Dopri5, ODETerm, PIDController, SaveAt, diffeqsolve
|
||||
from helpers import MSE
|
||||
from jax import numpy as jnp
|
||||
|
||||
from jaxpm.distributed import uniform_particles
|
||||
from jaxpm.painting import cic_paint, cic_paint_dx
|
||||
from jaxpm.pm import lpt, make_diffrax_ode
|
||||
import jax
|
||||
|
||||
|
||||
@pytest.mark.single_device
|
||||
@pytest.mark.parametrize("order", [1, 2])
|
||||
def test_grad_relative(simulation_config, initial_conditions,
|
||||
lpt_scale_factor, nbody_from_lpt1, nbody_from_lpt2,
|
||||
cosmo, order):
|
||||
|
||||
mesh_shape, _ = simulation_config
|
||||
cosmo._workspace = {}
|
||||
|
||||
@jax.jit
|
||||
@jax.grad
|
||||
def forward_model(initial_conditions, cosmo):
|
||||
|
||||
# Initial displacement
|
||||
dx, p, _ = lpt(cosmo, initial_conditions, a=lpt_scale_factor, order=order)
|
||||
|
||||
ode_fn = ODETerm(
|
||||
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=False))
|
||||
|
||||
solver = Dopri5()
|
||||
controller = PIDController(rtol=1e-7,
|
||||
atol=1e-7,
|
||||
pcoeff=0.4,
|
||||
icoeff=1,
|
||||
dcoeff=0)
|
||||
|
||||
saveat = SaveAt(t1=True)
|
||||
|
||||
y0 = jnp.stack([dx, p])
|
||||
|
||||
solutions = diffeqsolve(ode_fn,
|
||||
solver,
|
||||
t0=lpt_scale_factor,
|
||||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
final_field = cic_paint_dx(solutions.ys[-1, 0])
|
||||
|
||||
return MSE(final_field, nbody_from_lpt1 if order == 1 else nbody_from_lpt2)
|
||||
|
||||
|
||||
bad_initial_conditions = initial_conditions + jax.random.normal(jax.random.PRNGKey(0), initial_conditions.shape) * 0.5
|
||||
best_ic = forward_model(initial_conditions , cosmo)
|
||||
bad_ic = forward_model(bad_initial_conditions, cosmo)
|
||||
|
||||
assert jnp.max(best_ic) < 1e-5
|
||||
assert jnp.max(bad_ic) > 1e-5
|
||||
|
||||
@pytest.mark.single_device
|
||||
@pytest.mark.parametrize("order", [1, 2])
|
||||
def test_grad_absolute(simulation_config, initial_conditions,
|
||||
lpt_scale_factor, nbody_from_lpt1, nbody_from_lpt2,
|
||||
cosmo, order):
|
||||
|
||||
mesh_shape, _ = simulation_config
|
||||
cosmo._workspace = {}
|
||||
|
||||
@jax.jit
|
||||
@jax.grad
|
||||
def forward_model(initial_conditions, cosmo):
|
||||
|
||||
# Initial displacement
|
||||
particles = uniform_particles(mesh_shape)
|
||||
dx, p, _ = lpt(cosmo, initial_conditions,particles, a=lpt_scale_factor, order=order)
|
||||
|
||||
ode_fn = ODETerm(
|
||||
make_diffrax_ode(cosmo, mesh_shape, paint_absolute_pos=True))
|
||||
|
||||
solver = Dopri5()
|
||||
controller = PIDController(rtol=1e-7,
|
||||
atol=1e-7,
|
||||
pcoeff=0.4,
|
||||
icoeff=1,
|
||||
dcoeff=0)
|
||||
|
||||
saveat = SaveAt(t1=True)
|
||||
|
||||
y0 = jnp.stack([particles + dx, p])
|
||||
|
||||
solutions = diffeqsolve(ode_fn,
|
||||
solver,
|
||||
t0=lpt_scale_factor,
|
||||
t1=1.0,
|
||||
dt0=None,
|
||||
y0=y0,
|
||||
stepsize_controller=controller,
|
||||
saveat=saveat)
|
||||
|
||||
final_field = cic_paint(jnp.zeros(mesh_shape), solutions.ys[-1, 0])
|
||||
|
||||
return MSE(final_field, nbody_from_lpt1 if order == 1 else nbody_from_lpt2)
|
||||
|
||||
|
||||
bad_initial_conditions = initial_conditions + jax.random.normal(jax.random.PRNGKey(0), initial_conditions.shape) * 0.5
|
||||
best_ic = forward_model(initial_conditions , cosmo)
|
||||
bad_ic = forward_model(bad_initial_conditions, cosmo)
|
||||
|
||||
assert jnp.max(best_ic) < 1e-5
|
||||
assert jnp.max(bad_ic) > 1e-5
|
||||
|
||||
|
Loading…
Add table
Reference in a new issue