This commit is contained in:
Wassim Kabalan 2024-12-08 22:45:09 +01:00
parent 7823fdaf98
commit af29c4005d
7 changed files with 68 additions and 63 deletions

View file

@ -222,12 +222,11 @@ def cic_read_dx_impl(grid_mesh, disp, halo_size):
pmid = pmid.reshape([-1, 3]) pmid = pmid.reshape([-1, 3])
disp = disp.reshape([-1, 3]) disp = disp.reshape([-1, 3])
return gather(pmid, disp, return gather(pmid, disp, grid_mesh).reshape(original_shape)
grid_mesh).reshape(original_shape)
@partial(jax.jit, static_argnums=(2, 3)) @partial(jax.jit, static_argnums=(2, 3))
def cic_read_dx(grid_mesh,disp , halo_size=0, sharding=None): def cic_read_dx(grid_mesh, disp, halo_size=0, sharding=None):
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding) halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
grid_mesh = slice_pad(grid_mesh, halo_size, sharding=sharding) grid_mesh = slice_pad(grid_mesh, halo_size, sharding=sharding)
@ -239,7 +238,7 @@ def cic_read_dx(grid_mesh,disp , halo_size=0, sharding=None):
displacements = autoshmap(partial(cic_read_dx_impl, halo_size=halo_size), displacements = autoshmap(partial(cic_read_dx_impl, halo_size=halo_size),
gpu_mesh=gpu_mesh, gpu_mesh=gpu_mesh,
in_specs=(spec), in_specs=(spec),
out_specs=spec)(grid_mesh , disp) out_specs=spec)(grid_mesh, disp)
return displacements return displacements

View file

@ -25,12 +25,15 @@ def _chunk_split(ptcl_num, chunk_size, *arrays):
return remainder, chunks return remainder, chunks
def enmesh(base_indices, displacements, cell_size, base_shape, offset, new_cell_size, new_shape): def enmesh(base_indices, displacements, cell_size, base_shape, offset,
new_cell_size, new_shape):
"""Multilinear enmeshing.""" """Multilinear enmeshing."""
base_indices = jnp.asarray(base_indices) base_indices = jnp.asarray(base_indices)
displacements = jnp.asarray(displacements) displacements = jnp.asarray(displacements)
with jax.experimental.enable_x64(): with jax.experimental.enable_x64():
cell_size = jnp.float64(cell_size) if new_cell_size is not None else jnp.array(cell_size, dtype=displacements.dtype) cell_size = jnp.float64(
cell_size) if new_cell_size is not None else jnp.array(
cell_size, dtype=displacements.dtype)
if base_shape is not None: if base_shape is not None:
base_shape = jnp.array(base_shape, dtype=base_indices.dtype) base_shape = jnp.array(base_shape, dtype=base_indices.dtype)
offset = jnp.float64(offset) offset = jnp.float64(offset)
@ -40,12 +43,14 @@ def enmesh(base_indices, displacements, cell_size, base_shape, offset, new_cell_
new_shape = jnp.array(new_shape, dtype=base_indices.dtype) new_shape = jnp.array(new_shape, dtype=base_indices.dtype)
spatial_dim = base_indices.shape[1] spatial_dim = base_indices.shape[1]
neighbor_offsets = (jnp.arange(2**spatial_dim, dtype=base_indices.dtype)[:, jnp.newaxis] >> neighbor_offsets = (
jnp.arange(2**spatial_dim, dtype=base_indices.dtype)[:, jnp.newaxis] >>
jnp.arange(spatial_dim, dtype=base_indices.dtype)) & 1 jnp.arange(spatial_dim, dtype=base_indices.dtype)) & 1
if new_cell_size is not None: if new_cell_size is not None:
particle_positions = base_indices * cell_size + displacements - offset particle_positions = base_indices * cell_size + displacements - offset
particle_positions = particle_positions[:, jnp.newaxis] # insert neighbor axis particle_positions = particle_positions[:, jnp.
newaxis] # insert neighbor axis
new_indices = particle_positions + neighbor_offsets * new_cell_size # multilinear new_indices = particle_positions + neighbor_offsets * new_cell_size # multilinear
if base_shape is not None: if base_shape is not None:
@ -56,7 +61,9 @@ def enmesh(base_indices, displacements, cell_size, base_shape, offset, new_cell_
new_displacements = particle_positions - new_indices * new_cell_size new_displacements = particle_positions - new_indices * new_cell_size
if base_shape is not None: if base_shape is not None:
new_displacements -= jnp.rint(new_displacements / grid_length) * grid_length # also abs(new_displacements) < new_cell_size is expected new_displacements -= jnp.rint(
new_displacements / grid_length
) * grid_length # also abs(new_displacements) < new_cell_size is expected
new_indices = new_indices.astype(base_indices.dtype) new_indices = new_indices.astype(base_indices.dtype)
new_displacements = new_displacements.astype(displacements.dtype) new_displacements = new_displacements.astype(displacements.dtype)

View file

@ -1,9 +1,7 @@
import jax.numpy as jnp import jax.numpy as jnp
import jax_cosmo as jc import jax_cosmo as jc
from jaxpm.distributed import (fft3d, ifft3d, from jaxpm.distributed import fft3d, ifft3d, normal_field
normal_field)
from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second, from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second,
growth_rate, growth_rate_second) growth_rate, growth_rate_second)
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel,
@ -27,7 +25,8 @@ def pm_forces(positions,
mesh_shape = delta.shape mesh_shape = delta.shape
if paint_absolute_pos: if paint_absolute_pos:
paint_fn = lambda pos: cic_paint(jnp.zeros(shape=mesh_shape , device=sharding), paint_fn = lambda pos: cic_paint(jnp.zeros(shape=mesh_shape,
device=sharding),
pos, pos,
halo_size=halo_size, halo_size=halo_size,
sharding=sharding) sharding=sharding)
@ -72,7 +71,8 @@ def lpt(cosmo,
""" """
paint_absolute_pos = particles is not None paint_absolute_pos = particles is not None
if particles is None: if particles is None:
particles = jnp.zeros_like(initial_conditions , shape=(*initial_conditions.shape , 3)) particles = jnp.zeros_like(initial_conditions,
shape=(*initial_conditions.shape, 3))
a = jnp.atleast_1d(a) a = jnp.atleast_1d(a)
E = jnp.sqrt(jc.background.Esqr(cosmo, a)) E = jnp.sqrt(jc.background.Esqr(cosmo, a))
@ -172,7 +172,8 @@ def make_ode_fn(mesh_shape,
return nbody_ode return nbody_ode
def make_diffrax_ode(cosmo, mesh_shape, def make_diffrax_ode(cosmo,
mesh_shape,
paint_absolute_pos=True, paint_absolute_pos=True,
halo_size=0, halo_size=0,
sharding=None): sharding=None):
@ -199,6 +200,7 @@ def make_diffrax_ode(cosmo, mesh_shape,
return nbody_ode return nbody_ode
def pgd_correction(pos, mesh_shape, params): def pgd_correction(pos, mesh_shape, params):
""" """
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, improve the short-range interactions of PM-Nbody simulations with potential gradient descent method,

View file

@ -5,7 +5,6 @@ import numpy as np
from jax.scipy.stats import norm from jax.scipy.stats import norm
from scipy.special import legendre from scipy.special import legendre
__all__ = [ __all__ = [
'power_spectrum', 'transfer', 'coherence', 'pktranscoh', 'power_spectrum', 'transfer', 'coherence', 'pktranscoh',
'cross_correlation_coefficients', 'gaussian_smoothing' 'cross_correlation_coefficients', 'gaussian_smoothing'

View file

@ -18,7 +18,7 @@ import numpy as np
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm, from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
PIDController, SaveAt, diffeqsolve) PIDController, SaveAt, diffeqsolve)
from jax.experimental.mesh_utils import create_device_mesh from jax.experimental.mesh_utils import create_device_mesh
from jax.experimental.multihost_utils import (process_allgather) from jax.experimental.multihost_utils import process_allgather
from jax.sharding import Mesh, NamedSharding from jax.sharding import Mesh, NamedSharding
from jax.sharding import PartitionSpec as P from jax.sharding import PartitionSpec as P

View file

@ -1,6 +1,8 @@
# Parameterized fixture for mesh_shape # Parameterized fixture for mesh_shape
import os import os
import pytest import pytest
os.environ["EQX_ON_ERROR"] = "nan" os.environ["EQX_ON_ERROR"] = "nan"
setup_done = False setup_done = False
on_cluster = False on_cluster = False
@ -10,6 +12,7 @@ def is_on_cluster():
global on_cluster global on_cluster
return on_cluster return on_cluster
def initialize_distributed(): def initialize_distributed():
global setup_done global setup_done
global on_cluster global on_cluster
@ -26,40 +29,31 @@ def initialize_distributed():
setup_done = True setup_done = True
on_cluster = False on_cluster = False
os.environ["JAX_PLATFORM_NAME"] = "cpu" os.environ["JAX_PLATFORM_NAME"] = "cpu"
os.environ["XLA_FLAGS"] = "--xla_force_host_platform_device_count=8" os.environ[
"XLA_FLAGS"] = "--xla_force_host_platform_device_count=8"
import jax import jax
@pytest.fixture(scope="session", autouse=True)
def setup_and_teardown_session():
# Code to run at the start of the session
print("Starting session...")
initialize_distributed()
# Setup code here
# e.g., connecting to a database, initializing some resources, etc.
@pytest.fixture( @pytest.fixture(
scope="session", scope="session",
params=[ params=[
((64, 64, 64) , (512., 512., 512.)), # BOX ((32, 32, 32), (256., 256., 256.)), # BOX
((64, 64, 128) , (256. , 256. , 512.)), # RECTANGULAR ((32, 32, 64), (256., 256., 512.)), # RECTANGULAR
]) ])
def simulation_config(request): def simulation_config(request):
return request.param return request.param
@pytest.fixture(scope="session", params=[0.1 , 0.5 , 0.8]) @pytest.fixture(scope="session", params=[0.1, 0.5, 0.8])
def lpt_scale_factor(request): def lpt_scale_factor(request):
return request.param return request.param
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def cosmo(): def cosmo():
from jax_cosmo import Cosmology
from functools import partial from functools import partial
from jax_cosmo import Cosmology
Planck18 = partial( Planck18 = partial(
Cosmology, Cosmology,
# Omega_m = 0.3111 # Omega_m = 0.3111
@ -85,9 +79,9 @@ def particle_mesh(simulation_config):
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def fpm_initial_conditions(cosmo, particle_mesh): def fpm_initial_conditions(cosmo, particle_mesh):
from jax import numpy as jnp
import jax_cosmo as jc import jax_cosmo as jc
import numpy as np import numpy as np
from jax import numpy as jnp
# Generate initial particle positions # Generate initial particle positions
grid = particle_mesh.generate_uniform_particle_grid(shift=0).astype( grid = particle_mesh.generate_uniform_particle_grid(shift=0).astype(
@ -117,7 +111,8 @@ def initial_conditions(fpm_initial_conditions):
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def solver(cosmo, particle_mesh): def solver(cosmo, particle_mesh):
from fastpm.core import Solver, Cosmology as FastPMCosmology from fastpm.core import Cosmology as FastPMCosmology
from fastpm.core import Solver
ref_cosmo = FastPMCosmology(cosmo) ref_cosmo = FastPMCosmology(cosmo)
return Solver(particle_mesh, ref_cosmo, B=1) return Solver(particle_mesh, ref_cosmo, B=1)
@ -150,8 +145,8 @@ def fpm_lpt2_field(fpm_lpt2, particle_mesh):
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def nbody_from_lpt1(solver, fpm_lpt1, particle_mesh, lpt_scale_factor): def nbody_from_lpt1(solver, fpm_lpt1, particle_mesh, lpt_scale_factor):
from fastpm.core import leapfrog
import numpy as np import numpy as np
from fastpm.core import leapfrog
if lpt_scale_factor == 0.8: if lpt_scale_factor == 0.8:
pytest.skip("Do not run nbody simulation from scale factor 0.8") pytest.skip("Do not run nbody simulation from scale factor 0.8")
@ -166,8 +161,8 @@ def nbody_from_lpt1(solver, fpm_lpt1, particle_mesh, lpt_scale_factor):
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def nbody_from_lpt2(solver, fpm_lpt2, particle_mesh, lpt_scale_factor): def nbody_from_lpt2(solver, fpm_lpt2, particle_mesh, lpt_scale_factor):
from fastpm.core import leapfrog
import numpy as np import numpy as np
from fastpm.core import leapfrog
if lpt_scale_factor == 0.8: if lpt_scale_factor == 0.8:
pytest.skip("Do not run nbody simulation from scale factor 0.8") pytest.skip("Do not run nbody simulation from scale factor 0.8")

View file

@ -1,10 +1,13 @@
import jax.numpy as jnp import jax.numpy as jnp
def MSE(x , y):
def MSE(x, y):
return jnp.mean((x - y)**2) return jnp.mean((x - y)**2)
def MSE_3D(x , y):
def MSE_3D(x, y):
return ((x - y)**2).mean(axis=0) return ((x - y)**2).mean(axis=0)
def MSRE(x , y):
return jnp.mean(((x - y)/ y)**2) def MSRE(x, y):
return jnp.mean(((x - y) / y)**2)