adjust test for hpc-plotter

This commit is contained in:
Wassim KABALAN 2024-08-02 21:22:45 +02:00
parent ccbfee3615
commit aebc3e72c0

View file

@ -10,7 +10,7 @@ size = jax.process_count()
import argparse
import time
from hpc_plotter.timer import Timer
import jax.numpy as jnp
import jax_cosmo as jc
import numpy as np
@ -27,13 +27,6 @@ from jaxpm.painting import cic_paint_dx
from jaxpm.pm import linear_field, lpt, make_ode_fn
def chrono_fun(fun, *args):
start = time.perf_counter()
out = fun(*args)
out[0].block_until_ready()
end = time.perf_counter()
return out, end - start
def run_simulation(mesh_shape,
box_size,
@ -59,7 +52,6 @@ def run_simulation(mesh_shape,
# Create particles
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
if solver_choice == "Dopri5":
solver = Dopri5()
elif solver_choice == "LeapfrogMidpoint":
@ -68,7 +60,8 @@ def run_simulation(mesh_shape,
solver = Tsit5()
elif solver_choice == "lpt":
lpt_field = cic_paint_dx(dx, halo_size=halo_size)
return lpt_field, {"num_steps": 0, "Solver": "LPT"}
print(f"TYPE of lpt_field: {type(lpt_field)}")
return lpt_field, {"num_steps": 0}
else:
raise ValueError(
"Invalid solver choice. Use 'Dopri5' or 'LeapfrogMidpoint'.")
@ -76,8 +69,11 @@ def run_simulation(mesh_shape,
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
term = ODETerm(
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
if solver_choice == "Dopri5" or solver_choice == "Tsit5":
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
elif solver_choice == "LeapfrogMidpoint" or solver_choice == "Euler":
stepsize_controller = ConstantStepSize()
res = diffeqsolve(term,
solver,
t0=0.1,
@ -96,28 +92,27 @@ def run_simulation(mesh_shape,
def run():
# Warm start
times = []
chrono_fun = Timer()
RangePush("warmup")
(final_field, stats), warmup_time = chrono_fun(simulate, 0.32, 0.8)
final_field, stats = chrono_fun.chrono_jit(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
sync_global_devices("warmup")
for i in range(iterations):
RangePush(f"sim iter {i}")
(final_field, stats), sim_time = chrono_fun(simulate, 0.32, 0.8)
final_field, stats = chrono_fun.chrono_fun(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
times.append(sim_time)
return stats, warmup_time, times, final_field
return final_field, stats, chrono_fun
if jax.device_count() > 1:
devices = mesh_utils.create_device_mesh(pdims)
mesh = Mesh(devices.T, axis_names=('x', 'y'))
with mesh:
# Warm start
stats, warmup_time, times, final_field = run()
final_field, stats, chrono_fun = run()
else:
stats, warmup_time, times, final_field = run()
final_field, stats, chrono_fun = run()
return stats, warmup_time, times, final_field
return final_field, stats, chrono_fun
if __name__ == "__main__":
@ -139,6 +134,11 @@ if __name__ == "__main__":
type=str,
help='Processor dimensions',
default=None)
parser.add_argument('-pr',
'--precision',
type=str,
help='Precision',
choices=["float32", "float64"],)
parser.add_argument('-hs',
'--halo_size',
type=int,
@ -168,9 +168,13 @@ if __name__ == "__main__":
'--save_fields',
action='store_true',
help='Save fields')
parser.add_argument('-n',
'--nodes',
type=int,
help='Number of nodes',
default=1)
args = parser.parse_args()
mesh_size = args.mesh_size
box_size = [args.box_size] * 3
halo_size = args.halo_size
@ -178,13 +182,14 @@ if __name__ == "__main__":
iterations = args.iterations
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
print(f"solver choice: {solver_choice}")
match solver_choice:
case "Dopri5", "dopri5", "d5":
case "Dopri5" | "dopri5"| "d5":
solver_choice = "Dopri5"
case "Tsit5", "tsit5", "t5":
case "Tsit5"| "tsit5"| "t5":
solver_choice = "Tsit5"
case "LeapfrogMidpoint", "leapfrogmidpoint", "lfm":
case "LeapfrogMidpoint"| "leapfrogmidpoint"| "lfm":
solver_choice = "LeapfrogMidpoint"
case "lpt":
solver_choice = "lpt"
@ -192,6 +197,10 @@ if __name__ == "__main__":
raise ValueError(
"Invalid solver choice. Use 'Dopri5', 'Tsit5', 'LeapfrogMidpoint' or 'lpt"
)
if args.precision == "float32":
jax.config.update("jax_enable_x64", False)
elif args.precision == "float64":
jax.config.update("jax_enable_x64", True)
if args.pdims:
pdims = tuple(map(int, args.pdims.split("x")))
@ -200,26 +209,24 @@ if __name__ == "__main__":
mesh_shape = [mesh_size] * 3
stats, warmup_time, times, final_field = run_simulation(mesh_shape,
box_size,
halo_size,
solver_choice,
iterations,
pdims=pdims)
final_field , stats, chrono_fun = run_simulation(mesh_shape, box_size, halo_size, solver_choice, iterations, pdims)
print(f"shape of final_field {final_field.shape} and sharding spec {final_field.sharding} and local shape {final_field.addressable_data(0).shape}")
# Write benchmark results to CSV
# RANK SIZE MESHSIZE BOX HALO SOLVER NUM_STEPS JITTIME MIN MAX MEAN STD
times = np.array(times)
jit_in_ms = (warmup_time * 1000)
min_time = np.min(times) * 1000
max_time = np.max(times) * 1000
mean_time = np.mean(times) * 1000
std_time = np.std(times) * 1000
with open(f"{output_path}/jax_pm_benchmark.csv", 'a') as f:
f.write(
f"{rank},{size},{mesh_size},{box_size[0]},{halo_size},{solver_choice},{stats['num_steps']},{jit_in_ms},{min_time},{max_time},{mean_time},{std_time}\n"
)
metadata = {
'rank': rank,
'function_name': f'JAXPM-{solver_choice}',
'precision': args.precision,
'x': str(mesh_size),
'y': str(mesh_size),
'z': str(stats["num_steps"]),
'px': str(pdims[0]),
'py': str(pdims[1]),
'backend': 'NCCL',
'nodes': str(args.nodes)
}
# Print the results to a CSV file
chrono_fun.print_to_csv(f'{output_path}/jaxpm_benchmark.csv', **metadata)
# Save the final field
nb_gpus = jax.device_count()
@ -228,18 +235,15 @@ if __name__ == "__main__":
os.makedirs(field_folder, exist_ok=True)
with open(f'{field_folder}/jaxpm.log', 'w') as f:
f.write(f"Args: {args}\n")
f.write(f"JIT time: {jit_in_ms:.4f} ms\n")
f.write(f"Min time: {min_time:.4f} ms\n")
f.write(f"Max time: {max_time:.4f} ms\n")
f.write(f"Mean time: {mean_time:.4f} ms\n")
f.write(f"Std time: {std_time:.4f} ms\n")
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
for i , time in enumerate(chrono_fun.times):
f.write(f"Time {i}: {time:.4f} ms\n")
f.write(f"Stats: {stats}\n")
if args.save_fields:
np.save(f'{field_folder}/final_field_0_{rank}.npy',
final_field.addressable_data(0))
print(f"Finished! Warmup time: {warmup_time:.4f} seconds")
print(f"mean times: {np.mean(times):.4f}")
print(f"Finished! ")
print(f"Stats {stats}")
print(f"Saving to {output_path}/jax_pm_benchmark.csv")
print(f"Saving field and logs in {field_folder}")