diff --git a/scripts/bench_pmwd.py b/scripts/bench_pmwd.py new file mode 100644 index 0000000..df84695 --- /dev/null +++ b/scripts/bench_pmwd.py @@ -0,0 +1,131 @@ +import os + +# Change JAX GPU memory preallocation fraction +os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = '.95' + +import jax +import argparse +import numpy as np +import matplotlib.pyplot as plt +from pmwd import ( + Configuration, + Cosmology, SimpleLCDM, + boltzmann, linear_power, growth, + white_noise, linear_modes, + lpt, nbody, scatter +) +from pmwd.pm_util import fftinv +from pmwd.spec_util import powspec +from pmwd.vis_util import simshow +from hpc_plotter.timer import Timer + +# Simulation configuration +def run_pmwd_simulation(ptcl_grid_shape, ptcl_spacing, solver , iterations, output_path): + + @jax.jit + def simulate(omega_m, sigma8): + + + conf = Configuration(ptcl_spacing, ptcl_grid_shape, mesh_shape=1) + print(conf) + print(f'Simulating {conf.ptcl_num} particles with a {conf.mesh_shape} mesh for {conf.a_nbody_num} time steps.') + + cosmo = Cosmology(conf, A_s_1e9=2.0, n_s=0.96, Omega_m=omega_m, Omega_b=sigma8, h=0.7) + print(cosmo) + + # Boltzmann calculation + cosmo = boltzmann(cosmo, conf) + print("Boltzmann calculation completed.") + + # Generate white noise field and scale with the linear power spectrum + seed = 0 + modes = white_noise(seed, conf) + modes = linear_modes(modes, cosmo, conf) + print("Linear modes generated.") + + # Solve LPT at some early time + ptcl, obsvbl = lpt(modes, cosmo, conf) + print("LPT solved.") + + if solver == "lfm": + # N-body time integration from LPT initial conditions + ptcl, obsvbl = jax.block_until_ready(nbody(ptcl, obsvbl, cosmo, conf)) + print("N-body time integration completed.") + + # Scatter particles to mesh to get the density field + dens = scatter(ptcl, conf) + return dens + + chrono_timer = Timer() + final_field = chrono_timer.chrono_jit(simulate, 0.3, 0.05) + + for _ in range(iterations): + final_field = chrono_timer.chrono_fun(simulate, 0.3, 0.05) + + return final_field , chrono_timer + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description='PMWD Simulation') + parser.add_argument('-m', '--mesh_size', type=int, help='Mesh size', required=True) + parser.add_argument('-b', '--box_size', type=float, help='Box size', required=True) + parser.add_argument('-i', '--iterations', type=int, help='Number of iterations', default=10) + parser.add_argument('-o', '--output_path', type=str, help='Output path', default=".") + parser.add_argument('-f', '--save_fields', action='store_true', help='Save fields') + parser.add_argument('-s', '--solver', type=str, help='Solver', choices=["lfm" , "lpt"]) + parser.add_argument('-pr', + '--precision', + type=str, + help='Precision', + choices=["float32", "float64"],) + + + args = parser.parse_args() + + mesh_shape = [args.mesh_size] * 3 + ptcl_spacing = args.box_size /args.mesh_size + iterations = args.iterations + solver = args.solver + output_path = args.output_path + if args.precision == "float32": + jax.config.update("jax_enable_x64", False) + elif args.precision == "float64": + jax.config.update("jax_enable_x64", True) + + + os.makedirs(output_path, exist_ok=True) + + final_field , chrono_fun = run_pmwd_simulation(mesh_shape, ptcl_spacing, solver, iterations, output_path) + print("PMWD simulation completed.") + + + metadata = { + 'rank': 0, + 'function_name': f'PMWD-{solver}', + 'precision': args.precision, + 'x': str(mesh_shape[0]), + 'y': str(mesh_shape[0]), + 'z': str(mesh_shape[0]), + 'px': "1", + 'py': "1", + 'backend': 'NCCL', + 'nodes': "1" + } + chrono_fun.print_to_csv(f"{output_path}/pmwd.csv", **metadata) + field_folder = f"{output_path}/final_field/1/{args.mesh_size}_{int(args.box_size)}/{args.solver}" + os.makedirs(field_folder, exist_ok=True) + with open(f"{field_folder}/pmwd.log", "w") as f: + f.write(f"PMWD simulation completed.\n") + f.write(f"Args : {args}\n") + f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n") + for i , time in enumerate(chrono_fun.times): + f.write(f"Time {i}: {time:.4f} ms\n") + if args.save_fields: + np.save(f"{field_folder}/final_field_0_0.npy", final_field) + print("Fields saved.") + + + print(f"saving to {output_path}/pmwd.csv") + print(f"saving field and logs to {field_folder}/pmwd.log") + +