mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-05-14 03:51:11 +00:00
Merge branch 'main' into neural_ode
This commit is contained in:
commit
9a279d2d6c
16 changed files with 858 additions and 328 deletions
38
jaxpm/pm.py
38
jaxpm/pm.py
|
@ -1,11 +1,12 @@
|
|||
import jax
|
||||
import jax.numpy as jnp
|
||||
|
||||
import jax_cosmo as jc
|
||||
|
||||
from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel, PGD_kernel
|
||||
from jaxpm.growth import dGfa, growth_factor, growth_rate
|
||||
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, laplace_kernel,
|
||||
longrange_kernel)
|
||||
from jaxpm.painting import cic_paint, cic_read
|
||||
from jaxpm.growth import growth_factor, growth_rate, dGfa
|
||||
|
||||
|
||||
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
|
||||
"""
|
||||
|
@ -21,10 +22,14 @@ def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
|
|||
delta_k = jnp.fft.rfftn(delta)
|
||||
|
||||
# Computes gravitational potential
|
||||
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split)
|
||||
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec,
|
||||
r_split=r_split)
|
||||
# Computes gravitational forces
|
||||
return jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), positions)
|
||||
for i in range(3)],axis=-1)
|
||||
return jnp.stack([
|
||||
cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k), positions)
|
||||
for i in range(3)
|
||||
],
|
||||
axis=-1)
|
||||
|
||||
|
||||
def lpt(cosmo, initial_conditions, positions, a):
|
||||
|
@ -34,25 +39,31 @@ def lpt(cosmo, initial_conditions, positions, a):
|
|||
initial_force = pm_forces(positions, delta=initial_conditions)
|
||||
a = jnp.atleast_1d(a)
|
||||
dx = growth_factor(cosmo, a) * initial_force
|
||||
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
|
||||
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
|
||||
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo,
|
||||
a)) * dx
|
||||
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo,
|
||||
a) * initial_force
|
||||
return dx, p, f
|
||||
|
||||
|
||||
def linear_field(mesh_shape, box_size, pk, seed):
|
||||
"""
|
||||
Generate initial conditions.
|
||||
"""
|
||||
kvec = fftk(mesh_shape)
|
||||
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5
|
||||
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2])
|
||||
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2
|
||||
for i, kk in enumerate(kvec))**0.5
|
||||
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (
|
||||
box_size[0] * box_size[1] * box_size[2])
|
||||
|
||||
field = jax.random.normal(seed, mesh_shape)
|
||||
field = jnp.fft.rfftn(field) * pkmesh**0.5
|
||||
field = jnp.fft.irfftn(field)
|
||||
return field
|
||||
|
||||
|
||||
def make_ode_fn(mesh_shape):
|
||||
|
||||
|
||||
def nbody_ode(state, a, cosmo):
|
||||
"""
|
||||
state is a tuple (position, velocities)
|
||||
|
@ -63,10 +74,10 @@ def make_ode_fn(mesh_shape):
|
|||
|
||||
# Computes the update of position (drift)
|
||||
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
|
||||
|
||||
|
||||
# Computes the update of velocity (kick)
|
||||
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
|
||||
|
||||
|
||||
return dpos, dvel
|
||||
|
||||
return nbody_ode
|
||||
|
@ -128,4 +139,3 @@ def make_neural_ode_fn(model, mesh_shape):
|
|||
|
||||
return dpos, dvel
|
||||
return neural_nbody_ode
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue