Merge branch 'main' into neural_ode

This commit is contained in:
Francois Lanusse 2024-07-19 10:48:09 -04:00 committed by GitHub
commit 9a279d2d6c
16 changed files with 858 additions and 328 deletions

View file

@ -1,11 +1,12 @@
import jax
import jax.numpy as jnp
import jax_cosmo as jc
from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel, PGD_kernel
from jaxpm.growth import dGfa, growth_factor, growth_rate
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, laplace_kernel,
longrange_kernel)
from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
"""
@ -21,10 +22,14 @@ def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
delta_k = jnp.fft.rfftn(delta)
# Computes gravitational potential
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split)
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec,
r_split=r_split)
# Computes gravitational forces
return jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), positions)
for i in range(3)],axis=-1)
return jnp.stack([
cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k), positions)
for i in range(3)
],
axis=-1)
def lpt(cosmo, initial_conditions, positions, a):
@ -34,25 +39,31 @@ def lpt(cosmo, initial_conditions, positions, a):
initial_force = pm_forces(positions, delta=initial_conditions)
a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo,
a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo,
a) * initial_force
return dx, p, f
def linear_field(mesh_shape, box_size, pk, seed):
"""
Generate initial conditions.
"""
kvec = fftk(mesh_shape)
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2])
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2
for i, kk in enumerate(kvec))**0.5
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (
box_size[0] * box_size[1] * box_size[2])
field = jax.random.normal(seed, mesh_shape)
field = jnp.fft.rfftn(field) * pkmesh**0.5
field = jnp.fft.irfftn(field)
return field
def make_ode_fn(mesh_shape):
def nbody_ode(state, a, cosmo):
"""
state is a tuple (position, velocities)
@ -63,10 +74,10 @@ def make_ode_fn(mesh_shape):
# Computes the update of position (drift)
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
# Computes the update of velocity (kick)
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
return dpos, dvel
return nbody_ode
@ -128,4 +139,3 @@ def make_neural_ode_fn(model, mesh_shape):
return dpos, dvel
return neural_nbody_ode