mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-06-29 08:31:11 +00:00
fix formatting from main
This commit is contained in:
parent
02754cf452
commit
8da3149581
2 changed files with 57 additions and 43 deletions
|
@ -83,53 +83,58 @@ def power_spectrum(field, kmin=5, dk=0.5, boxsize=False):
|
|||
return kbins, P / norm
|
||||
|
||||
|
||||
def cross_correlation_coefficients(field_a,field_b, kmin=5, dk=0.5, boxsize=False):
|
||||
"""
|
||||
def cross_correlation_coefficients(field_a,
|
||||
field_b,
|
||||
kmin=5,
|
||||
dk=0.5,
|
||||
boxsize=False):
|
||||
"""
|
||||
Calculate the cross correlation coefficients given two real space field
|
||||
|
||||
|
||||
Args:
|
||||
|
||||
field_a: real valued field
|
||||
field_b: real valued field
|
||||
|
||||
field_a: real valued field
|
||||
field_b: real valued field
|
||||
kmin: minimum k-value for binned powerspectra
|
||||
dk: differential in each kbin
|
||||
boxsize: length of each boxlength (can be strangly shaped?)
|
||||
|
||||
|
||||
Returns:
|
||||
|
||||
|
||||
kbins: the central value of the bins for plotting
|
||||
P / norm: normalized cross correlation coefficient between two field a and b
|
||||
|
||||
P / norm: normalized cross correlation coefficient between two field a and b
|
||||
|
||||
"""
|
||||
shape = field_a.shape
|
||||
nx, ny, nz = shape
|
||||
shape = field_a.shape
|
||||
nx, ny, nz = shape
|
||||
|
||||
#initialze values related to powerspectra (mode bins and weights)
|
||||
dig, Nsum, xsum, W, k, kedges = _initialize_pk(shape, boxsize, kmin, dk)
|
||||
#initialze values related to powerspectra (mode bins and weights)
|
||||
dig, Nsum, xsum, W, k, kedges = _initialize_pk(shape, boxsize, kmin, dk)
|
||||
|
||||
#fast fourier transform
|
||||
fft_image_a = jnp.fft.fftn(field_a)
|
||||
fft_image_b = jnp.fft.fftn(field_b)
|
||||
#fast fourier transform
|
||||
fft_image_a = jnp.fft.fftn(field_a)
|
||||
fft_image_b = jnp.fft.fftn(field_b)
|
||||
|
||||
#absolute value of fast fourier transform
|
||||
pk = fft_image_a * jnp.conj(fft_image_b)
|
||||
#absolute value of fast fourier transform
|
||||
pk = fft_image_a * jnp.conj(fft_image_b)
|
||||
|
||||
#calculating powerspectra
|
||||
real = jnp.real(pk).reshape([-1])
|
||||
imag = jnp.imag(pk).reshape([-1])
|
||||
#calculating powerspectra
|
||||
real = jnp.real(pk).reshape([-1])
|
||||
imag = jnp.imag(pk).reshape([-1])
|
||||
|
||||
Psum = jnp.bincount(dig, weights=(W.flatten() * imag), length=xsum.size) * 1j
|
||||
Psum += jnp.bincount(dig, weights=(W.flatten() * real), length=xsum.size)
|
||||
Psum = jnp.bincount(dig, weights=(W.flatten() * imag),
|
||||
length=xsum.size) * 1j
|
||||
Psum += jnp.bincount(dig, weights=(W.flatten() * real), length=xsum.size)
|
||||
|
||||
P = ((Psum / Nsum)[1:-1] * boxsize.prod()).astype('float32')
|
||||
P = ((Psum / Nsum)[1:-1] * boxsize.prod()).astype('float32')
|
||||
|
||||
#normalization for powerspectra
|
||||
norm = np.prod(np.array(shape[:])).astype('float32')**2
|
||||
#normalization for powerspectra
|
||||
norm = np.prod(np.array(shape[:])).astype('float32')**2
|
||||
|
||||
#find central values of each bin
|
||||
kbins = kedges[:-1] + (kedges[1:] - kedges[:-1]) / 2
|
||||
#find central values of each bin
|
||||
kbins = kedges[:-1] + (kedges[1:] - kedges[:-1]) / 2
|
||||
|
||||
return kbins, P / norm
|
||||
return kbins, P / norm
|
||||
|
||||
|
||||
def gaussian_smoothing(im, sigma):
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue