mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-08 04:40:53 +00:00
merge hugos LPT2 code
This commit is contained in:
parent
2f509932f5
commit
86233081e2
2 changed files with 149 additions and 153 deletions
|
@ -1,5 +1,3 @@
|
||||||
from enum import Enum
|
|
||||||
|
|
||||||
import jax.numpy as jnp
|
import jax.numpy as jnp
|
||||||
import jax_cosmo as jc
|
import jax_cosmo as jc
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -45,16 +43,18 @@ def interpolate_power_spectrum(input, k, pk, sharding=None):
|
||||||
def gradient_kernel(kvec, direction, order=1):
|
def gradient_kernel(kvec, direction, order=1):
|
||||||
"""
|
"""
|
||||||
Computes the gradient kernel in the requested direction
|
Computes the gradient kernel in the requested direction
|
||||||
Parameters:
|
|
||||||
|
Parameters
|
||||||
-----------
|
-----------
|
||||||
kvec: array
|
kvec: list
|
||||||
Array of k values in Fourier space
|
List of wave-vectors in Fourier space
|
||||||
direction: int
|
direction: int
|
||||||
Index of the direction in which to take the gradient
|
Index of the direction in which to take the gradient
|
||||||
Returns:
|
|
||||||
|
Returns
|
||||||
--------
|
--------
|
||||||
wts: array
|
wts: array
|
||||||
Complex kernel
|
Complex kernel values
|
||||||
"""
|
"""
|
||||||
if order == 0:
|
if order == 0:
|
||||||
wts = 1j * kvec[direction]
|
wts = 1j * kvec[direction]
|
||||||
|
@ -69,36 +69,42 @@ def gradient_kernel(kvec, direction, order=1):
|
||||||
return wts
|
return wts
|
||||||
|
|
||||||
|
|
||||||
def laplace_kernel(kvec):
|
def invlaplace_kernel(kvec):
|
||||||
"""
|
"""
|
||||||
Compute the Laplace kernel from a given K vector
|
Compute the inverse Laplace kernel
|
||||||
Parameters:
|
|
||||||
|
Parameters
|
||||||
-----------
|
-----------
|
||||||
kvec: array
|
kvec: list
|
||||||
Array of k values in Fourier space
|
List of wave-vectors
|
||||||
Returns:
|
|
||||||
|
Returns
|
||||||
--------
|
--------
|
||||||
wts: array
|
wts: array
|
||||||
Complex kernel
|
Complex kernel values
|
||||||
"""
|
"""
|
||||||
kk = sum(ki**2 for ki in kvec)
|
kk = sum(ki**2 for ki in kvec)
|
||||||
wts = jnp.where(kk == 0, 1., 1. / kk)
|
kk_nozeros = jnp.where(kk==0, 1, kk)
|
||||||
return wts
|
return - jnp.where(kk==0, 0, 1 / kk_nozeros)
|
||||||
|
|
||||||
|
|
||||||
def longrange_kernel(kvec, r_split):
|
def longrange_kernel(kvec, r_split):
|
||||||
"""
|
"""
|
||||||
Computes a long range kernel
|
Computes a long range kernel
|
||||||
Parameters:
|
|
||||||
|
Parameters
|
||||||
-----------
|
-----------
|
||||||
kvec: array
|
kvec: list
|
||||||
Array of k values in Fourier space
|
List of wave-vectors
|
||||||
r_split: float
|
r_split: float
|
||||||
TODO: @modichirag add documentation
|
Splitting radius
|
||||||
Returns:
|
|
||||||
|
Returns
|
||||||
--------
|
--------
|
||||||
wts: array
|
wts: array
|
||||||
kernel
|
Complex kernel values
|
||||||
|
|
||||||
|
TODO: @modichirag add documentation
|
||||||
"""
|
"""
|
||||||
if r_split != 0:
|
if r_split != 0:
|
||||||
kk = sum(ki**2 for ki in kvec)
|
kk = sum(ki**2 for ki in kvec)
|
||||||
|
@ -112,11 +118,17 @@ def cic_compensation(kvec):
|
||||||
Computes cic compensation kernel.
|
Computes cic compensation kernel.
|
||||||
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
|
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
|
||||||
Itself based on equation 18 (with p=2) of
|
Itself based on equation 18 (with p=2) of
|
||||||
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
|
[Jing et al 2005](https://arxiv.org/abs/astro-ph/0409240)
|
||||||
Args:
|
|
||||||
kvec: array of k values in Fourier space
|
Parameters:
|
||||||
|
-----------
|
||||||
|
kvec: list
|
||||||
|
List of wave-vectors
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
v: array of kernel
|
--------
|
||||||
|
wts: array
|
||||||
|
Complex kernel values
|
||||||
"""
|
"""
|
||||||
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
|
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
|
||||||
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
|
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
|
||||||
|
@ -126,18 +138,20 @@ def cic_compensation(kvec):
|
||||||
def PGD_kernel(kvec, kl, ks):
|
def PGD_kernel(kvec, kl, ks):
|
||||||
"""
|
"""
|
||||||
Computes the PGD kernel
|
Computes the PGD kernel
|
||||||
|
|
||||||
Parameters:
|
Parameters:
|
||||||
-----------
|
-----------
|
||||||
kvec: array
|
kvec: list
|
||||||
Array of k values in Fourier space
|
List of wave-vectors
|
||||||
kl: float
|
kl: float
|
||||||
initial long range scale parameter
|
Initial long range scale parameter
|
||||||
ks: float
|
ks: float
|
||||||
initial dhort range scale parameter
|
Initial dhort range scale parameter
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
--------
|
--------
|
||||||
v: array
|
v: array
|
||||||
kernel
|
Complex kernel values
|
||||||
"""
|
"""
|
||||||
kk = sum(ki**2 for ki in kvec)
|
kk = sum(ki**2 for ki in kvec)
|
||||||
kl2 = kl**2
|
kl2 = kl**2
|
||||||
|
|
164
jaxpm/pm.py
164
jaxpm/pm.py
|
@ -9,7 +9,7 @@ from jaxpm.distributed import (autoshmap, fft3d, get_local_shape, ifft3d,
|
||||||
normal_field)
|
normal_field)
|
||||||
from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second,
|
from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second,
|
||||||
growth_rate, growth_rate_second)
|
growth_rate, growth_rate_second)
|
||||||
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, laplace_kernel,
|
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, invlaplace_kernel,
|
||||||
longrange_kernel)
|
longrange_kernel)
|
||||||
from jaxpm.painting import cic_paint, cic_paint_dx, cic_read, cic_read_dx
|
from jaxpm.painting import cic_paint, cic_paint_dx, cic_read, cic_read_dx
|
||||||
|
|
||||||
|
@ -29,18 +29,20 @@ def pm_forces(positions,
|
||||||
mesh_shape = delta.shape
|
mesh_shape = delta.shape
|
||||||
|
|
||||||
if delta is None:
|
if delta is None:
|
||||||
delta_k = fft3d(
|
field = cic_paint_dx(positions, halo_size=halo_size, sharding=sharding)
|
||||||
cic_paint_dx(positions, halo_size=halo_size, sharding=sharding))
|
delta_k = fft3d(field)
|
||||||
else:
|
elif jnp.isrealobj(delta):
|
||||||
delta_k = fft3d(delta)
|
delta_k = fft3d(delta)
|
||||||
|
else:
|
||||||
|
delta_k = delta
|
||||||
|
|
||||||
kvec = fftk(delta_k)
|
kvec = fftk(delta_k)
|
||||||
# Computes gravitational potential
|
# Computes gravitational potential
|
||||||
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec,
|
pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel(kvec,
|
||||||
r_split=r_split)
|
r_split=r_split)
|
||||||
# Computes gravitational forces
|
# Computes gravitational forces
|
||||||
forces = jnp.stack([
|
forces = jnp.stack([
|
||||||
cic_read_dx(ifft3d(gradient_kernel(kvec, i) * pot_k),
|
cic_read_dx(ifft3d( - gradient_kernel(kvec, i) * pot_k),
|
||||||
halo_size=halo_size,
|
halo_size=halo_size,
|
||||||
sharding=sharding) for i in range(3)
|
sharding=sharding) for i in range(3)
|
||||||
],
|
],
|
||||||
|
@ -49,44 +51,10 @@ def pm_forces(positions,
|
||||||
return forces
|
return forces
|
||||||
|
|
||||||
|
|
||||||
def lpt2_source(mesh_size, initial_conditions):
|
def lpt(cosmo, initial_conditions, a, halo_size=0, sharding=None,order=1):
|
||||||
|
|
||||||
kvec = fftk(mesh_size)
|
|
||||||
# TODO : this has already been done for LPT1, we should reuse it
|
|
||||||
delta_k = fft3d(initial_conditions)
|
|
||||||
|
|
||||||
source = jnp.zeros_like(delta_k)
|
|
||||||
|
|
||||||
D1 = [1, 2, 0]
|
|
||||||
D2 = [2, 0, 1]
|
|
||||||
|
|
||||||
# laplace_kernel should be actually inv laplace_kernel
|
|
||||||
# adding a minus sign here that will be negated when computing forces
|
|
||||||
# because F = -grad(phi)
|
|
||||||
# and phi = -laplace_kernel(delta_k)
|
|
||||||
pot_k = delta_k * laplace_kernel(delta_k)
|
|
||||||
|
|
||||||
nabla_i_nabla_i = [
|
|
||||||
ifft3d(gradient_kernel(kvec, i)**2 * pot_k) for i in range(3)
|
|
||||||
]
|
|
||||||
# for diagonal terms
|
|
||||||
source += nabla_i_nabla_i[D1[0]] * nabla_i_nabla_i[D2[0]]
|
|
||||||
source += nabla_i_nabla_i[D1[1]] * nabla_i_nabla_i[D2[1]]
|
|
||||||
source += nabla_i_nabla_i[D1[2]] * nabla_i_nabla_i[D2[2]]
|
|
||||||
|
|
||||||
# off diag terms
|
|
||||||
for i in range(3):
|
|
||||||
nabla_i_nabla_j = gradient_kernel(kvec, D1[i]) * gradient_kernel(
|
|
||||||
kvec, D2[i])
|
|
||||||
phi = ifft3d(nabla_i_nabla_j * pot_k)
|
|
||||||
source -= phi**2
|
|
||||||
|
|
||||||
return source
|
|
||||||
|
|
||||||
|
|
||||||
def lpt(cosmo, initial_conditions, a, halo_size=0, sharding=None):
|
|
||||||
"""
|
"""
|
||||||
Computes first order LPT displacement
|
Computes first and second order LPT displacement and momentum,
|
||||||
|
e.g. Eq. 2 and 3 [Jenkins2010](https://arxiv.org/pdf/0910.0258)
|
||||||
"""
|
"""
|
||||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||||
spec = sharding.spec if sharding is not None else P()
|
spec = sharding.spec if sharding is not None else P()
|
||||||
|
@ -99,44 +67,44 @@ def lpt(cosmo, initial_conditions, a, halo_size=0, sharding=None):
|
||||||
out_specs=spec)() # yapf: disable
|
out_specs=spec)() # yapf: disable
|
||||||
|
|
||||||
|
|
||||||
|
a = jnp.atleast_1d(a)
|
||||||
|
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
|
||||||
|
delta_k = fft3d(initial_conditions)
|
||||||
initial_force = pm_forces(displacement,
|
initial_force = pm_forces(displacement,
|
||||||
delta=initial_conditions,
|
delta=delta_k,
|
||||||
halo_size=halo_size,
|
halo_size=halo_size,
|
||||||
sharding=sharding)
|
sharding=sharding)
|
||||||
a = jnp.atleast_1d(a)
|
|
||||||
dx = growth_factor(cosmo, a) * initial_force
|
dx = growth_factor(cosmo, a) * initial_force
|
||||||
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo,
|
p = a**2 * growth_rate(cosmo, a) * E * dx
|
||||||
a)) * dx
|
f = a**2 * E * dGfa(cosmo,a) * initial_force
|
||||||
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo,
|
if order == 2:
|
||||||
a) * initial_force
|
kvec = fftk(delta_k)
|
||||||
return dx, p, f
|
pot_k = delta_k * invlaplace_kernel(kvec)
|
||||||
|
|
||||||
|
delta2 = 0
|
||||||
|
shear_acc = 0
|
||||||
|
# for i, ki in enumerate(kvec):
|
||||||
|
for i in range(3):
|
||||||
|
# Add products of diagonal terms = 0 + s11*s00 + s22*(s11+s00)...
|
||||||
|
# shear_ii = jnp.fft.irfftn(- ki**2 * pot_k)
|
||||||
|
nabla_i_nabla_i = gradient_kernel(kvec, i)**2
|
||||||
|
shear_ii = jnp.fft.irfftn(nabla_i_nabla_i * pot_k)
|
||||||
|
delta2 += shear_ii * shear_acc
|
||||||
|
shear_acc += shear_ii
|
||||||
|
|
||||||
# @Credit Hugo Simon https://github.com/hsimonfroy/montecosmo
|
# for kj in kvec[i+1:]:
|
||||||
def lpt2(cosmo, initial_conditions, dx, p, f, a, halo_size=0):
|
for j in range(i+1, 3):
|
||||||
|
# Substract squared strict-up-triangle terms
|
||||||
|
# delta2 -= jnp.fft.irfftn(- ki * kj * pot_k)**2
|
||||||
|
nabla_i_nabla_j = gradient_kernel(kvec, i) * gradient_kernel(kvec, j)
|
||||||
|
delta2 -= jnp.fft.irfftn(nabla_i_nabla_j * pot_k)**2
|
||||||
|
|
||||||
mesh_size = initial_conditions.shape
|
delta_k2 = fft3d(delta2)
|
||||||
local_mesh_shape = (*get_local_shape(initial_conditions.shape), 3)
|
init_force2 = pm_forces(displacement, delta=delta_k2,halo_size=halo_size,sharding=sharding)
|
||||||
# TODO
|
# NOTE: growth_factor_second is renormalized: - D2 = 3/7 * growth_factor_second
|
||||||
# Displacements have been created in the previous step
|
dx2 = 3/7 * growth_factor_second(cosmo, a) * init_force2
|
||||||
# find a way to reuse them
|
p2 = a**2 * growth_rate_second(cosmo, a) * E * dx2
|
||||||
displacement = autoshmap(
|
f2 = a**2 * E * dGf2a(cosmo, a) * init_force2
|
||||||
partial(jnp.zeros, shape=(local_mesh_shape), dtype='float32'),
|
|
||||||
in_specs=(),
|
|
||||||
out_specs=P('x', 'y'))() # yapf: disable
|
|
||||||
|
|
||||||
lpt2_delta = lpt2_source(mesh_size, initial_conditions)
|
|
||||||
delta2_k = fft3d(lpt2_delta)
|
|
||||||
|
|
||||||
lpt2_forces = pm_forces(displacement,
|
|
||||||
mesh_size,
|
|
||||||
delta_k=delta2_k,
|
|
||||||
halo_size=halo_size)
|
|
||||||
dx2 = 3 / 7 * growth_factor_second(cosmo, a) * lpt2_forces
|
|
||||||
p2 = a**2 * growth_rate_second(cosmo, a) * jnp.sqrt(
|
|
||||||
jc.background.Esqr(cosmo, a)) * dx2
|
|
||||||
f2 = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGf2a(cosmo,
|
|
||||||
a) * lpt2_forces
|
|
||||||
|
|
||||||
dx += dx2
|
dx += dx2
|
||||||
p += p2
|
p += p2
|
||||||
|
@ -185,10 +153,33 @@ def make_ode_fn(mesh_shape, halo_size=0, sharding=None):
|
||||||
|
|
||||||
return nbody_ode
|
return nbody_ode
|
||||||
|
|
||||||
|
def get_ode_fn(cosmo, mesh_shape, halo_size=0, sharding=None):
|
||||||
|
|
||||||
|
def nbody_ode(a, state, args):
|
||||||
|
"""
|
||||||
|
State is an array [position, velocities]
|
||||||
|
|
||||||
|
Compatible with [Diffrax API](https://docs.kidger.site/diffrax/)
|
||||||
|
"""
|
||||||
|
pos, vel = state
|
||||||
|
forces = pm_forces(pos, mesh_shape, halo_size=halo_size, sharding=sharding) * 1.5 * cosmo.Omega_m
|
||||||
|
|
||||||
|
# Computes the update of position (drift)
|
||||||
|
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
|
||||||
|
|
||||||
|
# Computes the update of velocity (kick)
|
||||||
|
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
|
||||||
|
|
||||||
|
return jnp.stack([dpos, dvel])
|
||||||
|
|
||||||
|
return nbody_ode
|
||||||
|
|
||||||
|
|
||||||
def pgd_correction(pos, mesh_shape, params):
|
def pgd_correction(pos, mesh_shape, params):
|
||||||
"""
|
"""
|
||||||
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671
|
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method,
|
||||||
|
based on https://arxiv.org/abs/1804.00671
|
||||||
|
|
||||||
args:
|
args:
|
||||||
pos: particle positions [npart, 3]
|
pos: particle positions [npart, 3]
|
||||||
params: [alpha, kl, ks] pgd parameters
|
params: [alpha, kl, ks] pgd parameters
|
||||||
|
@ -199,13 +190,10 @@ def pgd_correction(pos, mesh_shape, params):
|
||||||
delta_k = jnp.fft.rfftn(delta)
|
delta_k = jnp.fft.rfftn(delta)
|
||||||
PGD_range=PGD_kernel(kvec, kl, ks)
|
PGD_range=PGD_kernel(kvec, kl, ks)
|
||||||
|
|
||||||
pot_k_pgd = (delta_k * laplace_kernel(kvec)) * PGD_range
|
pot_k_pgd=(delta_k * invlaplace_kernel(kvec))*PGD_range
|
||||||
|
|
||||||
forces_pgd = jnp.stack([
|
forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(- gradient_kernel(kvec, i)*pot_k_pgd), pos)
|
||||||
cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k_pgd), pos)
|
for i in range(3)],axis=-1)
|
||||||
for i in range(3)
|
|
||||||
],
|
|
||||||
axis=-1)
|
|
||||||
|
|
||||||
dpos_pgd = forces_pgd*alpha
|
dpos_pgd = forces_pgd*alpha
|
||||||
|
|
||||||
|
@ -213,8 +201,7 @@ def pgd_correction(pos, mesh_shape, params):
|
||||||
|
|
||||||
|
|
||||||
def make_neural_ode_fn(model, mesh_shape):
|
def make_neural_ode_fn(model, mesh_shape):
|
||||||
|
def neural_nbody_ode(state, a, cosmo:Cosmology, params):
|
||||||
def neural_nbody_ode(state, a, cosmo, params):
|
|
||||||
"""
|
"""
|
||||||
state is a tuple (position, velocities)
|
state is a tuple (position, velocities)
|
||||||
"""
|
"""
|
||||||
|
@ -226,19 +213,15 @@ def make_neural_ode_fn(model, mesh_shape):
|
||||||
delta_k = jnp.fft.rfftn(delta)
|
delta_k = jnp.fft.rfftn(delta)
|
||||||
|
|
||||||
# Computes gravitational potential
|
# Computes gravitational potential
|
||||||
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec,
|
pot_k = delta_k * invlaplace_kernel(kvec) * longrange_kernel(kvec, r_split=0)
|
||||||
r_split=0)
|
|
||||||
|
|
||||||
# Apply a correction filter
|
# Apply a correction filter
|
||||||
kk = jnp.sqrt(sum((ki/jnp.pi)**2 for ki in kvec))
|
kk = jnp.sqrt(sum((ki/jnp.pi)**2 for ki in kvec))
|
||||||
pot_k = pot_k *(1. + model.apply(params, kk, jnp.atleast_1d(a)))
|
pot_k = pot_k *(1. + model.apply(params, kk, jnp.atleast_1d(a)))
|
||||||
|
|
||||||
# Computes gravitational forces
|
# Computes gravitational forces
|
||||||
forces = jnp.stack([
|
forces = jnp.stack([cic_read(jnp.fft.irfftn(- gradient_kernel(kvec, i)*pot_k), pos)
|
||||||
cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k), pos)
|
for i in range(3)],axis=-1)
|
||||||
for i in range(3)
|
|
||||||
],
|
|
||||||
axis=-1)
|
|
||||||
|
|
||||||
forces = forces * 1.5 * cosmo.Omega_m
|
forces = forces * 1.5 * cosmo.Omega_m
|
||||||
|
|
||||||
|
@ -249,5 +232,4 @@ def make_neural_ode_fn(model, mesh_shape):
|
||||||
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
|
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
|
||||||
|
|
||||||
return dpos, dvel
|
return dpos, dvel
|
||||||
|
|
||||||
return neural_nbody_ode
|
return neural_nbody_ode
|
||||||
|
|
Loading…
Add table
Reference in a new issue