creoss correlation function

This commit is contained in:
denise lanzieri 2022-06-18 18:23:46 +02:00
parent 8b885450a8
commit 84b79af7f8
2 changed files with 49 additions and 1 deletions

View file

@ -80,7 +80,6 @@ def pgd_correction(pos, mesh_shape, cosmo, params):
params: [alpha, kl, ks] pgd parameters params: [alpha, kl, ks] pgd parameters
""" """
kvec = fftk(mesh_shape) kvec = fftk(mesh_shape)
delta = cic_paint(jnp.zeros(mesh_shape), pos) delta = cic_paint(jnp.zeros(mesh_shape), pos)
alpha, kl, ks = params alpha, kl, ks = params
delta_k = jnp.fft.rfftn(delta) delta_k = jnp.fft.rfftn(delta)

View file

@ -81,6 +81,55 @@ def power_spectrum(field, kmin=5, dk=0.5, boxsize=False):
return kbins, P / norm return kbins, P / norm
def cross_correlation_coefficients(field_a,field_b, kmin=5, dk=0.5, boxsize=False):
"""
Calculate the cross correlation coefficients given two real space field
Args:
field_a: real valued field
field_b: real valued field
kmin: minimum k-value for binned powerspectra
dk: differential in each kbin
boxsize: length of each boxlength (can be strangly shaped?)
Returns:
kbins: the central value of the bins for plotting
P / norm: normalized cross correlation coefficient between two field a and b
"""
shape = field_a.shape
nx, ny, nz = shape
#initialze values related to powerspectra (mode bins and weights)
dig, Nsum, xsum, W, k, kedges = _initialize_pk(shape, boxsize, kmin, dk)
#fast fourier transform
fft_image_a = jnp.fft.fftn(field_a)
fft_image_b = jnp.fft.fftn(field_b)
#absolute value of fast fourier transform
pk = fft_image_a * jnp.conj(fft_image_b)
#calculating powerspectra
real = jnp.real(pk).reshape([-1])
imag = jnp.imag(pk).reshape([-1])
Psum = jnp.bincount(dig, weights=(W.flatten() * imag), length=xsum.size) * 1j
Psum += jnp.bincount(dig, weights=(W.flatten() * real), length=xsum.size)
P = ((Psum / Nsum)[1:-1] * boxsize.prod()).astype('float32')
#normalization for powerspectra
norm = np.prod(np.array(shape[:])).astype('float32')**2
#find central values of each bin
kbins = kedges[:-1] + (kedges[1:] - kedges[:-1]) / 2
return kbins, P / norm
def gaussian_smoothing(im, sigma): def gaussian_smoothing(im, sigma):
""" """
im: 2d image im: 2d image