mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-24 11:50:53 +00:00
fixed a whole lot of issues
This commit is contained in:
parent
429813ad92
commit
72ae0fd88f
5 changed files with 251 additions and 155 deletions
137
jaxpm/kernels.py
137
jaxpm/kernels.py
|
@ -1,84 +1,91 @@
|
||||||
|
import jax
|
||||||
|
from jax.experimental.maps import xmap
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import jax.numpy as jnp
|
import jax.numpy as jnp
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
def fftk(shape, symmetric=True, dtype=np.float32, comms=None):
|
|
||||||
""" Return k_vector given a shape (nc, nc, nc)
|
|
||||||
"""
|
|
||||||
k = []
|
|
||||||
|
|
||||||
if comms is not None:
|
def fftk(shape, symmetric=False, dtype=np.float32, comms=None):
|
||||||
nx = comms[0].Get_size()
|
""" Return k_vector given a shape (nc, nc, nc)
|
||||||
ix = comms[0].Get_rank()
|
"""
|
||||||
ny = comms[1].Get_size()
|
k = []
|
||||||
iy = comms[1].Get_rank()
|
|
||||||
shape = [shape[0]*nx, shape[1]*ny] + list(shape[2:])
|
|
||||||
|
|
||||||
for d in range(len(shape)):
|
if comms is not None:
|
||||||
kd = np.fft.fftfreq(shape[d])
|
nx = comms[0].Get_size()
|
||||||
kd *= 2 * np.pi
|
ix = comms[0].Get_rank()
|
||||||
|
ny = comms[1].Get_size()
|
||||||
|
iy = comms[1].Get_rank()
|
||||||
|
shape = [shape[0]*nx, shape[1]*ny] + list(shape[2:])
|
||||||
|
|
||||||
if symmetric and d == len(shape) - 1:
|
for d in range(len(shape)):
|
||||||
kd = kd[:shape[d] // 2 + 1]
|
kd = np.fft.fftfreq(shape[d])
|
||||||
|
kd *= 2 * np.pi
|
||||||
|
|
||||||
if (comms is not None) and d==0:
|
if symmetric and d == len(shape) - 1:
|
||||||
kd = kd.reshape([nx, -1])[ix]
|
kd = kd[:shape[d] // 2 + 1]
|
||||||
|
|
||||||
if (comms is not None) and d==1:
|
if (comms is not None) and d == 0:
|
||||||
kd = kd.reshape([ny, -1])[iy]
|
kd = kd.reshape([nx, -1])[ix]
|
||||||
|
|
||||||
k.append(kd.astype(dtype))
|
if (comms is not None) and d == 1:
|
||||||
return k
|
kd = kd.reshape([ny, -1])[iy]
|
||||||
|
|
||||||
@partial(jax.pmap,
|
k.append(kd.astype(dtype))
|
||||||
in_axes=[['x','y','z'],
|
return k
|
||||||
['x'],['y'],['z']],
|
|
||||||
out_axes=['x','y','z',...])
|
|
||||||
|
@partial(xmap,
|
||||||
|
in_axes=[['x', 'y', ...],
|
||||||
|
[['x'], ['y'], [...]]],
|
||||||
|
out_axes=['x', 'y', ...])
|
||||||
def apply_gradient_laplace(kfield, kvec):
|
def apply_gradient_laplace(kfield, kvec):
|
||||||
kx, ky, kz = kvec
|
kx, ky, kz = kvec
|
||||||
kk = (kx**2 + ky**2 + kz**2)
|
kk = (kx**2 + ky**2 + kz**2)
|
||||||
kernel = jnp.where(kk == 0, 1., 1./kk)
|
kernel = jnp.where(kk == 0, 1., 1./kk)
|
||||||
return jnp.stack([kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(ky) - jnp.sin(2 * ky)),
|
return jnp.stack([kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(ky) - jnp.sin(2 * ky)),
|
||||||
kfield * kernel * 1j * 1 / 6.0 *
|
kfield * kernel * 1j * 1 / 6.0 *
|
||||||
(8 * jnp.sin(kz) - jnp.sin(2 * kz)),
|
(8 * jnp.sin(kz) - jnp.sin(2 * kz)),
|
||||||
kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(kx) - jnp.sin(2 * kx))],axis=-1)
|
kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(kx) - jnp.sin(2 * kx))], axis=-1)
|
||||||
|
|
||||||
|
|
||||||
def cic_compensation(kvec):
|
def cic_compensation(kvec):
|
||||||
"""
|
"""
|
||||||
Computes cic compensation kernel.
|
Computes cic compensation kernel.
|
||||||
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
|
Adapted from https://github.com/bccp/nbodykit/blob/a387cf429d8cb4a07bb19e3b4325ffdf279a131e/nbodykit/source/mesh/catalog.py#L499
|
||||||
Itself based on equation 18 (with p=2) of
|
Itself based on equation 18 (with p=2) of
|
||||||
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
|
`Jing et al 2005 <https://arxiv.org/abs/astro-ph/0409240>`_
|
||||||
Args:
|
Args:
|
||||||
kvec: array of k values in Fourier space
|
kvec: array of k values in Fourier space
|
||||||
Returns:
|
Returns:
|
||||||
v: array of kernel
|
v: array of kernel
|
||||||
"""
|
"""
|
||||||
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
|
kwts = [np.sinc(kvec[i] / (2 * np.pi)) for i in range(3)]
|
||||||
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
|
wts = (kwts[0] * kwts[1] * kwts[2])**(-2)
|
||||||
return wts
|
return wts
|
||||||
|
|
||||||
|
|
||||||
def PGD_kernel(kvec, kl, ks):
|
def PGD_kernel(kvec, kl, ks):
|
||||||
"""
|
"""
|
||||||
Computes the PGD kernel
|
Computes the PGD kernel
|
||||||
Parameters:
|
Parameters:
|
||||||
-----------
|
-----------
|
||||||
kvec: array
|
kvec: array
|
||||||
Array of k values in Fourier space
|
Array of k values in Fourier space
|
||||||
kl: float
|
kl: float
|
||||||
initial long range scale parameter
|
initial long range scale parameter
|
||||||
ks: float
|
ks: float
|
||||||
initial dhort range scale parameter
|
initial dhort range scale parameter
|
||||||
Returns:
|
Returns:
|
||||||
--------
|
--------
|
||||||
v: array
|
v: array
|
||||||
kernel
|
kernel
|
||||||
"""
|
"""
|
||||||
kk = sum(ki**2 for ki in kvec)
|
kk = sum(ki**2 for ki in kvec)
|
||||||
kl2 = kl**2
|
kl2 = kl**2
|
||||||
ks4 = ks**4
|
ks4 = ks**4
|
||||||
mask = (kk == 0).nonzero()
|
mask = (kk == 0).nonzero()
|
||||||
kk[mask] = 1
|
kk[mask] = 1
|
||||||
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
|
v = jnp.exp(-kl2 / kk) * jnp.exp(-kk**2 / ks4)
|
||||||
imask = (~(kk == 0)).astype(int)
|
imask = (~(kk == 0)).astype(int)
|
||||||
v *= imask
|
v *= imask
|
||||||
return v
|
return v
|
||||||
|
|
52
jaxpm/ops.py
52
jaxpm/ops.py
|
@ -73,34 +73,58 @@ def ifft3d(arr, comms=None):
|
||||||
|
|
||||||
|
|
||||||
def halo_reduce(arr, halo_size, comms=None):
|
def halo_reduce(arr, halo_size, comms=None):
|
||||||
|
if halo_size <= 0:
|
||||||
|
return arr
|
||||||
|
|
||||||
# Perform halo exchange along x
|
# Perform halo exchange along x
|
||||||
rank_x = comms[0].Get_rank()
|
rank_x = comms[0].Get_rank()
|
||||||
|
size_x = comms[0].Get_size()
|
||||||
margin = arr[-2*halo_size:]
|
margin = arr[-2*halo_size:]
|
||||||
margin, token = mpi4jax.sendrecv(margin, margin, rank_x-1, rank_x+1,
|
left, token = mpi4jax.sendrecv(margin, margin,
|
||||||
comm=comms[0])
|
(rank_x-1) % size_x,
|
||||||
arr = arr.at[:2*halo_size].add(margin)
|
(rank_x+1) % size_x,
|
||||||
|
comm=comms[0])
|
||||||
margin = arr[:2*halo_size]
|
margin = arr[:2*halo_size]
|
||||||
margin, token = mpi4jax.sendrecv(margin, margin, rank_x+1, rank_x-1,
|
right, token = mpi4jax.sendrecv(margin, margin,
|
||||||
comm=comms[0], token=token)
|
(rank_x+1) % size_x,
|
||||||
arr = arr.at[-2*halo_size:].add(margin)
|
(rank_x-1) % size_x,
|
||||||
|
comm=comms[0], token=token)
|
||||||
|
|
||||||
|
arr = arr.at[:2*halo_size].add(left)
|
||||||
|
arr = arr.at[-2*halo_size:].add(right)
|
||||||
|
|
||||||
# Perform halo exchange along y
|
# Perform halo exchange along y
|
||||||
rank_y = comms[1].Get_rank()
|
rank_y = comms[1].Get_rank()
|
||||||
|
size_y = comms[1].Get_size()
|
||||||
margin = arr[:, -2*halo_size:]
|
margin = arr[:, -2*halo_size:]
|
||||||
margin, token = mpi4jax.sendrecv(margin, margin, rank_y-1, rank_y+1,
|
left, token = mpi4jax.sendrecv(margin, margin,
|
||||||
comm=comms[1], token=token)
|
(rank_y-1) % size_y,
|
||||||
arr = arr.at[:, :2*halo_size].add(margin)
|
(rank_y+1) % size_y,
|
||||||
|
comm=comms[1], token=token)
|
||||||
margin = arr[:, :2*halo_size]
|
margin = arr[:, :2*halo_size]
|
||||||
margin, token = mpi4jax.sendrecv(margin, margin, rank_y+1, rank_y-1,
|
right, token = mpi4jax.sendrecv(margin, margin,
|
||||||
comm=comms[1], token=token)
|
(rank_y+1) % size_y,
|
||||||
arr = arr.at[:, -2*halo_size:].add(margin)
|
(rank_y-1) % size_y,
|
||||||
|
comm=comms[1], token=token)
|
||||||
|
arr = arr.at[:, :2*halo_size].add(left)
|
||||||
|
arr = arr.at[:, -2*halo_size:].add(right)
|
||||||
|
|
||||||
return arr
|
return arr
|
||||||
|
|
||||||
|
|
||||||
|
def meshgrid3d(shape, comms=None):
|
||||||
|
if comms is not None:
|
||||||
|
nx = comms[0].Get_size()
|
||||||
|
ny = comms[1].Get_size()
|
||||||
|
|
||||||
|
coords = [jnp.arange(shape[0]//nx),
|
||||||
|
jnp.arange(shape[1]//ny)] + [jnp.arange(s) for s in shape[2:]]
|
||||||
|
else:
|
||||||
|
coords = [jnp.arange(s) for s in shape[2:]]
|
||||||
|
|
||||||
|
return jnp.stack(jnp.meshgrid(*coords), axis=-1).reshape([-1, 3])
|
||||||
|
|
||||||
|
|
||||||
def zeros(shape, comms=None):
|
def zeros(shape, comms=None):
|
||||||
""" Initialize an array of given global shape
|
""" Initialize an array of given global shape
|
||||||
partitionned if need be accross dimensions.
|
partitionned if need be accross dimensions.
|
||||||
|
|
|
@ -6,7 +6,7 @@ from jaxpm.ops import halo_reduce
|
||||||
from jaxpm.kernels import fftk, cic_compensation
|
from jaxpm.kernels import fftk, cic_compensation
|
||||||
|
|
||||||
|
|
||||||
def cic_paint(mesh, positions, halo_size=0, token=None, comms=None):
|
def cic_paint(mesh, positions, halo_size=0, comms=None):
|
||||||
""" Paints positions onto mesh
|
""" Paints positions onto mesh
|
||||||
mesh: [nx, ny, nz]
|
mesh: [nx, ny, nz]
|
||||||
positions: [npart, 3]
|
positions: [npart, 3]
|
||||||
|
@ -43,11 +43,11 @@ def cic_paint(mesh, positions, halo_size=0, token=None, comms=None):
|
||||||
if comms == None:
|
if comms == None:
|
||||||
return mesh
|
return mesh
|
||||||
else:
|
else:
|
||||||
mesh, token = halo_reduce(mesh, halo_size, token, comms)
|
mesh = halo_reduce(mesh, halo_size, comms)
|
||||||
return mesh[halo_size:-halo_size, halo_size:-halo_size]
|
return mesh[halo_size:-halo_size, halo_size:-halo_size]
|
||||||
|
|
||||||
|
|
||||||
def cic_read(mesh, positions, halo_size=0, token=None, comms=None):
|
def cic_read(mesh, positions, halo_size=0, comms=None):
|
||||||
""" Paints positions onto mesh
|
""" Paints positions onto mesh
|
||||||
mesh: [nx, ny, nz]
|
mesh: [nx, ny, nz]
|
||||||
positions: [npart, 3]
|
positions: [npart, 3]
|
||||||
|
@ -59,7 +59,7 @@ def cic_read(mesh, positions, halo_size=0, token=None, comms=None):
|
||||||
mesh = jnp.pad(mesh, [[halo_size, halo_size],
|
mesh = jnp.pad(mesh, [[halo_size, halo_size],
|
||||||
[halo_size, halo_size],
|
[halo_size, halo_size],
|
||||||
[0, 0]])
|
[0, 0]])
|
||||||
mesh, token = halo_reduce(mesh, halo_size, token, comms)
|
mesh = halo_reduce(mesh, halo_size, comms)
|
||||||
positions += jnp.array([halo_size, halo_size, 0]).reshape([-1, 3])
|
positions += jnp.array([halo_size, halo_size, 0]).reshape([-1, 3])
|
||||||
|
|
||||||
positions = jnp.expand_dims(positions, 1)
|
positions = jnp.expand_dims(positions, 1)
|
||||||
|
@ -75,14 +75,9 @@ def cic_read(mesh, positions, halo_size=0, token=None, comms=None):
|
||||||
neighboor_coords = jnp.mod(
|
neighboor_coords = jnp.mod(
|
||||||
neighboor_coords.astype('int32'), jnp.array(mesh.shape))
|
neighboor_coords.astype('int32'), jnp.array(mesh.shape))
|
||||||
|
|
||||||
res = (mesh[neighboor_coords[..., 0],
|
return (mesh[neighboor_coords[..., 0],
|
||||||
neighboor_coords[..., 1],
|
neighboor_coords[..., 1],
|
||||||
neighboor_coords[..., 3]]*kernel).sum(axis=-1)
|
neighboor_coords[..., 3]]*kernel).sum(axis=-1)
|
||||||
|
|
||||||
if comms is not None:
|
|
||||||
return res
|
|
||||||
else:
|
|
||||||
return res, token
|
|
||||||
|
|
||||||
|
|
||||||
def cic_paint_2d(mesh, positions, weight):
|
def cic_paint_2d(mesh, positions, weight):
|
||||||
|
|
114
jaxpm/pm.py
114
jaxpm/pm.py
|
@ -1,68 +1,83 @@
|
||||||
import jax
|
import jax
|
||||||
|
from jax.experimental.maps import xmap
|
||||||
import jax.numpy as jnp
|
import jax.numpy as jnp
|
||||||
|
|
||||||
import jax_cosmo as jc
|
import jax_cosmo as jc
|
||||||
|
|
||||||
from jaxpm.ops import fft3d, ifft3d, zeros
|
from jaxpm.ops import fft3d, ifft3d, zeros, normal
|
||||||
from jaxpm.kernels import fftk, apply_gradient_laplace
|
from jaxpm.kernels import fftk, apply_gradient_laplace
|
||||||
from jaxpm.painting import cic_paint, cic_read
|
from jaxpm.painting import cic_paint, cic_read
|
||||||
from jaxpm.growth import growth_factor, growth_rate, dGfa
|
from jaxpm.growth import growth_factor, growth_rate, dGfa
|
||||||
|
|
||||||
|
|
||||||
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, token=None, comms=None):
|
def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, token=None, comms=None):
|
||||||
"""
|
"""
|
||||||
Computes gravitational forces on particles using a PM scheme
|
Computes gravitational forces on particles using a PM scheme
|
||||||
"""
|
"""
|
||||||
if mesh_shape is None:
|
|
||||||
mesh_shape = delta_k.shape
|
|
||||||
|
|
||||||
kvec = fftk(mesh_shape, comms=comms)
|
|
||||||
|
|
||||||
if delta_k is None:
|
if delta_k is None:
|
||||||
delta, token = cic_paint(zeros(mesh_shape,comms=comms),
|
delta = cic_paint(zeros(mesh_shape, comms=comms),
|
||||||
positions,
|
positions,
|
||||||
halo_size=halo_size, token=token, comms=comms)
|
halo_size=halo_size, comms=comms)
|
||||||
delta_k, token = fft3d(delta, token=token, comms=comms)
|
delta_k = fft3d(delta, comms=comms)
|
||||||
|
|
||||||
# Computes gravitational potential
|
|
||||||
forces_k = apply_gradient_laplace(kfield, kvec)
|
|
||||||
|
|
||||||
# Computes gravitational forces
|
# Computes gravitational forces
|
||||||
fx, token = ifft3d(forces_k[...,0], token=token, comms=comms)
|
kvec = fftk(delta_k.shape, symmetric=False, comms=comms)
|
||||||
fx, token = cic_read(fx, positions, halo_size=halo_size, comms=comms)
|
forces_k = apply_gradient_laplace(delta_k, kvec)
|
||||||
|
|
||||||
fy, token = ifft3d(forces_k[...,1], token=token, comms=comms)
|
# Interpolate forces at the position of particles
|
||||||
fy, token = cic_read(fy, positions, halo_size=halo_size, comms=comms)
|
return jnp.stack([cic_read(ifft3d(forces_k[..., i], comms=comms).real,
|
||||||
|
positions, halo_size=halo_size, comms=comms)
|
||||||
|
for i in range(3)], axis=-1)
|
||||||
|
|
||||||
fz, token = ifft3d(forces_k[...,2], token=token, comms=comms)
|
|
||||||
fz, token = cic_read(fz, positions, halo_size=halo_size, comms=comms)
|
|
||||||
|
|
||||||
return jnp.stack([fx,fy,fz],axis=-1), token
|
def lpt(cosmo, positions, initial_conditions, a, halo_size=0, comms=None):
|
||||||
|
|
||||||
def lpt(cosmo, initial_conditions, positions, a, token=token, comms=comms):
|
|
||||||
"""
|
"""
|
||||||
Computes first order LPT displacement
|
Computes first order LPT displacement
|
||||||
"""
|
"""
|
||||||
initial_force = pm_forces(positions, delta=initial_conditions, token=token, comms=comms)
|
initial_force = pm_forces(
|
||||||
|
positions, delta_k=initial_conditions, halo_size=halo_size, comms=comms)
|
||||||
a = jnp.atleast_1d(a)
|
a = jnp.atleast_1d(a)
|
||||||
dx = growth_factor(cosmo, a) * initial_force
|
dx = growth_factor(cosmo, a) * initial_force
|
||||||
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
|
p = a**2 * growth_rate(cosmo, a) * \
|
||||||
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
|
jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
|
||||||
return dx, p, f, comms
|
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * \
|
||||||
|
dGfa(cosmo, a) * initial_force
|
||||||
|
return dx, p, f
|
||||||
|
|
||||||
def linear_field(mesh_shape, box_size, pk, seed):
|
|
||||||
|
def linear_field(cosmo, mesh_shape, box_size, key, comms=None):
|
||||||
"""
|
"""
|
||||||
Generate initial conditions.
|
Generate initial conditions in Fourier space.
|
||||||
"""
|
"""
|
||||||
kvec = fftk(mesh_shape)
|
# Sample normal field
|
||||||
kmesh = sum((kk / box_size[i] * mesh_shape[i])**2 for i, kk in enumerate(kvec))**0.5
|
field = normal(key, mesh_shape, comms=comms)
|
||||||
pkmesh = pk(kmesh) * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]) / (box_size[0] * box_size[1] * box_size[2])
|
|
||||||
|
|
||||||
field = jax.random.normal(seed, mesh_shape)
|
# Transform to Fourier space
|
||||||
field = jnp.fft.rfftn(field) * pkmesh**0.5
|
kfield = fft3d(field, comms=comms)
|
||||||
field = jnp.fft.irfftn(field)
|
|
||||||
return field
|
|
||||||
|
|
||||||
def make_ode_fn(mesh_shape):
|
# Rescaling k to physical units
|
||||||
|
kvec = [k / box_size[i] * mesh_shape[i]
|
||||||
|
for i, k in enumerate(fftk(kfield.shape,
|
||||||
|
symmetric=False,
|
||||||
|
comms=comms))]
|
||||||
|
|
||||||
|
# Evaluating linear matter powerspectrum
|
||||||
|
k = jnp.logspace(-4, 2, 256)
|
||||||
|
pk = jc.power.linear_matter_power(cosmo, k)
|
||||||
|
pk = pk * (mesh_shape[0] * mesh_shape[1] * mesh_shape[2]
|
||||||
|
) / (box_size[0] * box_size[1] * box_size[2])
|
||||||
|
|
||||||
|
# Multipliyng the field by the proper power spectrum
|
||||||
|
kfield = xmap(lambda kfield, kx, ky, kz:
|
||||||
|
kfield * jc.scipy.interpolate.interp(jnp.sqrt(kx**2+ky**2+kz**2),
|
||||||
|
k, jnp.sqrt(pk)),
|
||||||
|
in_axes=(('x', 'y', ...), ['x'], ['y'], [...]),
|
||||||
|
out_axes=('x', 'y', ...))(kfield, kvec[0], kvec[1], kvec[2])
|
||||||
|
|
||||||
|
return kfield
|
||||||
|
|
||||||
|
|
||||||
|
def make_ode_fn(mesh_shape, halo_size=0, comms=None):
|
||||||
|
|
||||||
def nbody_ode(state, a, cosmo):
|
def nbody_ode(state, a, cosmo):
|
||||||
"""
|
"""
|
||||||
|
@ -70,7 +85,8 @@ def make_ode_fn(mesh_shape):
|
||||||
"""
|
"""
|
||||||
pos, vel = state
|
pos, vel = state
|
||||||
|
|
||||||
forces = pm_forces(pos, mesh_shape=mesh_shape) * 1.5 * cosmo.Omega_m
|
forces = pm_forces(pos, mesh_shape=mesh_shape,
|
||||||
|
halo_size=halo_size, comms=comms) * 1.5 * cosmo.Omega_m
|
||||||
|
|
||||||
# Computes the update of position (drift)
|
# Computes the update of position (drift)
|
||||||
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
|
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
|
||||||
|
@ -81,27 +97,3 @@ def make_ode_fn(mesh_shape):
|
||||||
return dpos, dvel
|
return dpos, dvel
|
||||||
|
|
||||||
return nbody_ode
|
return nbody_ode
|
||||||
|
|
||||||
|
|
||||||
def pgd_correction(pos, params):
|
|
||||||
"""
|
|
||||||
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671
|
|
||||||
args:
|
|
||||||
pos: particle positions [npart, 3]
|
|
||||||
params: [alpha, kl, ks] pgd parameters
|
|
||||||
"""
|
|
||||||
kvec = fftk(mesh_shape)
|
|
||||||
|
|
||||||
delta = cic_paint(jnp.zeros(mesh_shape), pos)
|
|
||||||
alpha, kl, ks = params
|
|
||||||
delta_k = jnp.fft.rfftn(delta)
|
|
||||||
PGD_range=PGD_kernel(kvec, kl, ks)
|
|
||||||
|
|
||||||
pot_k_pgd=(delta_k * laplace_kernel(kvec))*PGD_range
|
|
||||||
|
|
||||||
forces_pgd= jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k_pgd), pos)
|
|
||||||
for i in range(3)],axis=-1)
|
|
||||||
|
|
||||||
dpos_pgd = forces_pgd*alpha
|
|
||||||
|
|
||||||
return dpos_pgd
|
|
78
scripts/test_nbody.py
Normal file
78
scripts/test_nbody.py
Normal file
|
@ -0,0 +1,78 @@
|
||||||
|
from dataclasses import fields
|
||||||
|
from mpi4py import MPI
|
||||||
|
import jax
|
||||||
|
import jax.numpy as jnp
|
||||||
|
import numpy as onp
|
||||||
|
import mpi4jax
|
||||||
|
from jaxpm.ops import fft3d, ifft3d, normal, meshgrid3d, zeros
|
||||||
|
from jaxpm.pm import linear_field, lpt, make_ode_fn
|
||||||
|
from jaxpm.painting import cic_paint
|
||||||
|
from jax.experimental.ode import odeint
|
||||||
|
import jax_cosmo as jc
|
||||||
|
|
||||||
|
|
||||||
|
### Setting up a whole bunch of things #######
|
||||||
|
# Create communicators
|
||||||
|
world = MPI.COMM_WORLD
|
||||||
|
rank = world.Get_rank()
|
||||||
|
size = world.Get_size()
|
||||||
|
|
||||||
|
cart_comm = MPI.COMM_WORLD.Create_cart(dims=[2, 2],
|
||||||
|
periods=[True, True])
|
||||||
|
comms = [cart_comm.Sub([True, False]),
|
||||||
|
cart_comm.Sub([False, True])]
|
||||||
|
|
||||||
|
# Setup random keys
|
||||||
|
master_key = jax.random.PRNGKey(42)
|
||||||
|
key = jax.random.split(master_key, size)[rank]
|
||||||
|
################################################
|
||||||
|
|
||||||
|
# Size and parameters of the simulation volume
|
||||||
|
N = 256
|
||||||
|
mesh_shape = [N, N, N]
|
||||||
|
box_size = [205, 205, 205] # Mpc/h
|
||||||
|
cosmo = jc.Planck15()
|
||||||
|
halo_size = 16
|
||||||
|
a = 0.1
|
||||||
|
|
||||||
|
|
||||||
|
@jax.jit
|
||||||
|
def run_sim(cosmo, key):
|
||||||
|
initial_conditions = linear_field(cosmo, mesh_shape, box_size, key,
|
||||||
|
comms=comms)
|
||||||
|
init_field = ifft3d(initial_conditions, comms=comms).real
|
||||||
|
|
||||||
|
# Initialize particles
|
||||||
|
pos = meshgrid3d(mesh_shape, comms=comms)
|
||||||
|
|
||||||
|
# Initial displacement by LPT
|
||||||
|
cosmo = jc.Planck15()
|
||||||
|
dx, p, f = lpt(cosmo, pos, initial_conditions, a, comms=comms)
|
||||||
|
|
||||||
|
# And now, we run an actual nbody
|
||||||
|
res = odeint(make_ode_fn(mesh_shape, halo_size, comms),
|
||||||
|
[pos+dx, p], jnp.linspace(0.1, 1.0, 2), cosmo,
|
||||||
|
rtol=1e-5, atol=1e-5)
|
||||||
|
|
||||||
|
# Painting on a new mesh
|
||||||
|
field = cic_paint(zeros(mesh_shape, comms=comms),
|
||||||
|
res[0][-1], halo_size, comms=comms)
|
||||||
|
|
||||||
|
return init_field, field
|
||||||
|
|
||||||
|
|
||||||
|
# Recover the real space initial conditions
|
||||||
|
init_field, field = run_sim(cosmo, key)
|
||||||
|
|
||||||
|
# Testing that the result is actually looking like what we expect
|
||||||
|
total_array, token = mpi4jax.allgather(field, comm=comms[0])
|
||||||
|
total_array = total_array.reshape([N, N//2, N])
|
||||||
|
total_array, token = mpi4jax.allgather(
|
||||||
|
total_array.transpose([1, 0, 2]), comm=comms[1], token=token)
|
||||||
|
total_array = total_array.reshape([N, N, N])
|
||||||
|
total_array = total_array.transpose([1, 0, 2])
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
onp.save('simulation.npy', total_array)
|
||||||
|
|
||||||
|
print('Done !')
|
Loading…
Add table
Reference in a new issue