add optimised bench script

This commit is contained in:
Wassim KABALAN 2024-07-18 13:16:37 +02:00
parent 4f508b7cb6
commit 5f6d42eaeb

201
scripts/bench_pm.py Normal file
View file

@ -0,0 +1,201 @@
import os
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
import jax
jax.distributed.initialize()
rank = jax.process_index()
size = jax.process_count()
import argparse
import jax.numpy as jnp
import jax_cosmo as jc
from jaxpm.painting import cic_paint_dx
from jaxpm.pm import linear_field, lpt, make_ode_fn
from diffrax import diffeqsolve, ODETerm, Dopri5, LeapfrogMidpoint, SaveAt, PIDController
import numpy as np
from jax.experimental import mesh_utils
from jax.sharding import Mesh, PartitionSpec as P, NamedSharding
from jaxpm.kernels import interpolate_power_spectrum
import time
from cupy.cuda.nvtx import RangePush, RangePop
from jax.experimental.multihost_utils import sync_global_devices
def chrono_fun(fun, *args):
start = time.perf_counter()
out = fun(*args).block_until_ready()
end = time.perf_counter()
return out, end - start
def run_simulation(mesh_shape,
box_size,
halo_size,
solver_choice,
iterations,
pdims=None):
@jax.jit
def simulate(omega_c, sigma8):
# Create a small function to generate the matter power spectrum
k = jnp.logspace(-4, 1, 128)
pk = jc.power.linear_matter_power(
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
# Create initial conditions
initial_conditions = linear_field(mesh_shape,
box_size,
pk_fn,
seed=jax.random.PRNGKey(0))
# Create particles
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
# Evolve the simulation forward
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
term = ODETerm(
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
if solver_choice == "Dopri5":
solver = Dopri5()
elif solver_choice == "LeapfrogMidpoint":
solver = LeapfrogMidpoint()
else:
raise ValueError(
"Invalid solver choice. Use 'Dopri5' or 'LeapfrogMidpoint'.")
stepsize_controller = PIDController(rtol=1e-4, atol=1e-4)
res = diffeqsolve(term,
solver,
t0=0.1,
t1=1.,
dt0=0.01,
y0=jnp.stack([dx, p], axis=0),
args=cosmo,
saveat=SaveAt(t1=True),
stepsize_controller=stepsize_controller)
# Return the simulation volume at requested
state = res.ys[-1]
final_field = cic_paint_dx(state[0], halo_size=halo_size)
return final_field, res.stats
def run():
# Warm start
times = []
RangePush("warmup")
final_field, stats, warmup_time = chrono_fun(simulate, 0.32, 0.8)
RangePop()
sync_global_devices("warmup")
for i in range(iterations):
RangePush(f"sim iter {i}")
final_field, stats, sim_time = chrono_fun(simulate, 0.32, 0.8)
RangePop()
times.append(sim_time)
return stats, warmup_time, times, final_field
if jax.device_count() > 1 and pdims:
devices = mesh_utils.create_device_mesh(pdims)
mesh = Mesh(devices.T, axis_names=('x', 'y'))
with mesh:
# Warm start
stats, warmup_time, times, final_field = run()
else:
stats, warmup_time, times, final_field = run()
return stats, warmup_time, times, final_field
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description='JAX Cosmo Simulation Benchmark')
parser.add_argument('-m',
'--mesh_size',
type=int,
help='Mesh size',
required=True)
parser.add_argument('-b',
'--box_size',
type=float,
help='Box size',
required=True)
parser.add_argument('-p',
'--pdims',
type=str,
help='Processor dimensions',
default=None)
parser.add_argument('-h',
'--halo_size',
type=int,
help='Halo size',
required=True)
parser.add_argument('-s',
'--solver',
type=str,
help='Solver',
choices=["Dopri5", "LeapfrogMidpoint"],
required=True)
parser.add_argument('-i',
'--iterations',
type=int,
help='Number of iterations',
default=10)
parser.add_argument('-o',
'--output_path',
type=str,
help='Output path',
default=".")
parser.add_argument('-f',
'--save_fields',
action='store_true',
help='Save fields')
args = parser.parse_args()
mesh_size = args.mesh_size
box_size = [args.box_size] * 3
halo_size = args.halo_size
solver_choice = args.solver
iterations = args.iterations
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
if args.pdims:
pdims = tuple(map(int, args.pdims.split("x")))
else:
pdims = None
mesh_shape = [mesh_size] * 3
stats, warmup_time, times, final_field = run_simulation(mesh_shape,
box_size,
halo_size,
solver_choice,
iterations,
pdims=pdims)
# Save the final field
if args.save_fields:
nb_gpus = jax.device_count()
field_folder = f"{output_path}/final_field/{nb_gpus}/{mesh_size}_{box_size[0]}/{solver_choice}/{halo_size}"
os.makedirs(field_folder, exist_ok=True)
np.save(f'{field_folder}/final_field_{rank}.npy',
final_field.addressable_data(0))
# Write benchmark results to CSV
# RANK SIZE MESHSIZE BOX HALO SOLVER NUM_STEPS JITTIME MIN MAX MEAN STD
times = np.array(times)
with open(f"{output_path}/jax_pm_benchmark.csv", 'a') as f:
f.write(
f"{rank},{size},{mesh_size},{box_size[0]},{halo_size},{solver_choice},{iterations},{warmup_time},{np.min(times)},{np.max(times)},{np.mean(times)},{np.std(times)}\n"
)
print(f"Finished! Warmup time: {warmup_time:.4f} seconds")
print(f"mean times: {np.mean(times):.4f}")
print(f"Stats")