mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-16 16:10:54 +00:00
remove script folder
This commit is contained in:
parent
e9529d35f8
commit
4da4c66472
4 changed files with 0 additions and 656 deletions
|
@ -1,123 +0,0 @@
|
||||||
import os
|
|
||||||
|
|
||||||
from distributed_utils import initialize_distributed, is_on_cluster
|
|
||||||
|
|
||||||
os.environ["EQX_ON_ERROR"] = "nan" # avoid an allgather caused by diffrax
|
|
||||||
initialize_distributed()
|
|
||||||
import jax
|
|
||||||
|
|
||||||
size = jax.device_count()
|
|
||||||
|
|
||||||
import jax.numpy as jnp
|
|
||||||
import jax_cosmo as jc
|
|
||||||
import numpy as np
|
|
||||||
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
|
|
||||||
SaveAt, diffeqsolve)
|
|
||||||
from jax.experimental import mesh_utils
|
|
||||||
from jax.experimental.multihost_utils import process_allgather
|
|
||||||
from jax.sharding import Mesh, NamedSharding
|
|
||||||
from jax.sharding import PartitionSpec as P
|
|
||||||
|
|
||||||
from jaxpm.kernels import interpolate_power_spectrum
|
|
||||||
from jaxpm.painting import cic_paint_dx
|
|
||||||
from jaxpm.pm import linear_field, lpt, make_ode_fn
|
|
||||||
|
|
||||||
size = 256
|
|
||||||
mesh_shape = [size] * 3
|
|
||||||
box_size = [float(size)] * 3
|
|
||||||
snapshots = jnp.linspace(0.1, 1., 4)
|
|
||||||
halo_size = 32
|
|
||||||
pdims = (1, 1)
|
|
||||||
mesh = None
|
|
||||||
sharding = None
|
|
||||||
if jax.device_count() > 1:
|
|
||||||
pdims = (2, 2)
|
|
||||||
devices = mesh_utils.create_device_mesh(pdims)
|
|
||||||
mesh = Mesh(devices.T, axis_names=('x', 'y'))
|
|
||||||
sharding = NamedSharding(mesh, P('x', 'y'))
|
|
||||||
|
|
||||||
|
|
||||||
@jax.jit
|
|
||||||
def run_simulation(omega_c, sigma8):
|
|
||||||
# Create a small function to generate the matter power spectrum
|
|
||||||
k = jnp.logspace(-4, 1, 128)
|
|
||||||
pk = jc.power.linear_matter_power(
|
|
||||||
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
|
|
||||||
|
|
||||||
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk, sharding)
|
|
||||||
# Create initial conditions
|
|
||||||
initial_conditions = linear_field(mesh_shape,
|
|
||||||
box_size,
|
|
||||||
pk_fn,
|
|
||||||
sharding=sharding,
|
|
||||||
seed=jax.random.PRNGKey(0))
|
|
||||||
|
|
||||||
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
|
|
||||||
|
|
||||||
# Initial displacement
|
|
||||||
dx, p, _ = lpt(cosmo,
|
|
||||||
initial_conditions,
|
|
||||||
0.1,
|
|
||||||
halo_size=halo_size,
|
|
||||||
sharding=sharding)
|
|
||||||
# return initial_conditions, cic_paint_dx(dx,
|
|
||||||
# halo_size=halo_size,
|
|
||||||
# sharding=sharding), None, None
|
|
||||||
# Evolve the simulation forward
|
|
||||||
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size, sharding=sharding)
|
|
||||||
term = ODETerm(
|
|
||||||
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
|
|
||||||
solver = LeapfrogMidpoint()
|
|
||||||
|
|
||||||
stepsize_controller = ConstantStepSize()
|
|
||||||
res = diffeqsolve(term,
|
|
||||||
solver,
|
|
||||||
t0=0.1,
|
|
||||||
t1=1.,
|
|
||||||
dt0=0.01,
|
|
||||||
y0=jnp.stack([dx, p], axis=0),
|
|
||||||
args=cosmo,
|
|
||||||
saveat=SaveAt(ts=snapshots),
|
|
||||||
stepsize_controller=stepsize_controller)
|
|
||||||
|
|
||||||
# Return the simulation volume at requested
|
|
||||||
states = res.ys
|
|
||||||
field = cic_paint_dx(dx, halo_size=halo_size, sharding=sharding)
|
|
||||||
final_fields = [
|
|
||||||
cic_paint_dx(state[0], halo_size=halo_size, sharding=sharding)
|
|
||||||
for state in states
|
|
||||||
]
|
|
||||||
|
|
||||||
return initial_conditions, field, final_fields, res.stats
|
|
||||||
|
|
||||||
|
|
||||||
# Run the simulation
|
|
||||||
distributed_str = "distributed" if mesh is not None else "single device"
|
|
||||||
print(f"running {distributed_str} simulation")
|
|
||||||
init, field, final_fields, stats = run_simulation(0.32, 0.8)
|
|
||||||
|
|
||||||
# # Print the statistics
|
|
||||||
print(stats)
|
|
||||||
print(f"done now saving")
|
|
||||||
if is_on_cluster():
|
|
||||||
rank = jax.process_index()
|
|
||||||
# # save the final state
|
|
||||||
np.save(f'initial_conditions_{rank}.npy', init.addressable_data(0))
|
|
||||||
np.save(f'field_{rank}.npy', field.addressable_data(0))
|
|
||||||
|
|
||||||
if final_fields is not None:
|
|
||||||
for i, final_field in enumerate(final_fields):
|
|
||||||
np.save(f'final_field_{i}_{rank}.npy',
|
|
||||||
final_field.addressable_data(0))
|
|
||||||
else:
|
|
||||||
gathered_init = process_allgather(init, tiled=True)
|
|
||||||
gathered_field = process_allgather(field, tiled=True)
|
|
||||||
np.save(f'initial_conditions.npy', gathered_init)
|
|
||||||
np.save(f'field.npy', gathered_field)
|
|
||||||
|
|
||||||
if final_fields is not None:
|
|
||||||
for i, final_field in enumerate(final_fields):
|
|
||||||
gathered_final_field = process_allgather(final_field, tiled=True)
|
|
||||||
np.save(f'final_field_{i}.npy', gathered_final_field)
|
|
||||||
|
|
||||||
print(f"Finished!!")
|
|
|
@ -1,144 +0,0 @@
|
||||||
import os
|
|
||||||
from math import prod
|
|
||||||
|
|
||||||
setup_done = False
|
|
||||||
on_cluster = False
|
|
||||||
|
|
||||||
|
|
||||||
def is_on_cluster():
|
|
||||||
global on_cluster
|
|
||||||
return on_cluster
|
|
||||||
|
|
||||||
|
|
||||||
def initialize_distributed():
|
|
||||||
global setup_done
|
|
||||||
global on_cluster
|
|
||||||
if not setup_done:
|
|
||||||
if "SLURM_JOB_ID" in os.environ:
|
|
||||||
on_cluster = True
|
|
||||||
print("Running on cluster")
|
|
||||||
import jax
|
|
||||||
jax.distributed.initialize()
|
|
||||||
setup_done = True
|
|
||||||
on_cluster = True
|
|
||||||
else:
|
|
||||||
print("Running locally")
|
|
||||||
setup_done = True
|
|
||||||
on_cluster = False
|
|
||||||
os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
|
||||||
os.environ[
|
|
||||||
"XLA_FLAGS"] = "--xla_force_host_platform_device_count=4"
|
|
||||||
import jax
|
|
||||||
|
|
||||||
|
|
||||||
def compare_sharding(sharding1, sharding2):
|
|
||||||
from jaxdecomp._src.spmd_ops import get_pdims_from_sharding
|
|
||||||
pdims1 = get_pdims_from_sharding(sharding1)
|
|
||||||
pdims2 = get_pdims_from_sharding(sharding2)
|
|
||||||
pdims1 = pdims1 + (1, ) * (3 - len(pdims1))
|
|
||||||
pdims2 = pdims2 + (1, ) * (3 - len(pdims2))
|
|
||||||
return pdims1 == pdims2
|
|
||||||
|
|
||||||
|
|
||||||
def replace_none_or_zero(value):
|
|
||||||
# Replace None or 0 with 1
|
|
||||||
return 0 if value is None else value
|
|
||||||
|
|
||||||
|
|
||||||
def process_slices(slices_tuple):
|
|
||||||
|
|
||||||
start_product = 1
|
|
||||||
stop_product = 1
|
|
||||||
|
|
||||||
for s in slices_tuple:
|
|
||||||
# Multiply the start and stop values, replacing None/0 with 1
|
|
||||||
start_product *= replace_none_or_zero(s.start)
|
|
||||||
stop_product *= replace_none_or_zero(s.stop)
|
|
||||||
|
|
||||||
# Return the sum of the two products
|
|
||||||
return int(start_product + stop_product)
|
|
||||||
|
|
||||||
|
|
||||||
def device_arange(pdims):
|
|
||||||
import jax
|
|
||||||
from jax import numpy as jnp
|
|
||||||
from jax.experimental import mesh_utils
|
|
||||||
from jax.sharding import Mesh, NamedSharding
|
|
||||||
from jax.sharding import PartitionSpec as P
|
|
||||||
|
|
||||||
devices = mesh_utils.create_device_mesh(pdims)
|
|
||||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
|
||||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
|
||||||
|
|
||||||
def generate_aranged(x):
|
|
||||||
x_start = replace_none_or_zero(x[0].start)
|
|
||||||
y_start = replace_none_or_zero(x[1].start)
|
|
||||||
a = jnp.array([[x_start + y_start * pdims[0]]])
|
|
||||||
print(f"index is {x} and value is {a}")
|
|
||||||
return a
|
|
||||||
|
|
||||||
aranged = jax.make_array_from_callback(mesh.devices.shape,
|
|
||||||
sharding,
|
|
||||||
data_callback=generate_aranged)
|
|
||||||
|
|
||||||
return aranged
|
|
||||||
|
|
||||||
|
|
||||||
def create_ones_spmd_array(global_shape, pdims):
|
|
||||||
|
|
||||||
import jax
|
|
||||||
from jax.experimental import mesh_utils
|
|
||||||
from jax.sharding import Mesh, NamedSharding
|
|
||||||
from jax.sharding import PartitionSpec as P
|
|
||||||
|
|
||||||
size = jax.device_count()
|
|
||||||
assert (len(global_shape) == 3)
|
|
||||||
assert (len(pdims) == 2)
|
|
||||||
assert (
|
|
||||||
prod(pdims) == size
|
|
||||||
), "The product of pdims must be equal to the number of MPI processes"
|
|
||||||
|
|
||||||
local_shape = (global_shape[0] // pdims[1], global_shape[1] // pdims[0],
|
|
||||||
global_shape[2])
|
|
||||||
|
|
||||||
# Remap to the global array from the local slice
|
|
||||||
devices = mesh_utils.create_device_mesh(pdims)
|
|
||||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
|
||||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
|
||||||
global_array = jax.make_array_from_callback(
|
|
||||||
global_shape,
|
|
||||||
sharding,
|
|
||||||
data_callback=lambda _: jax.numpy.ones(local_shape))
|
|
||||||
|
|
||||||
return global_array, mesh
|
|
||||||
|
|
||||||
|
|
||||||
# Helper function to create a 3D array and remap it to the global array
|
|
||||||
def create_spmd_array(global_shape, pdims):
|
|
||||||
|
|
||||||
import jax
|
|
||||||
from jax.experimental import mesh_utils
|
|
||||||
from jax.sharding import Mesh, NamedSharding
|
|
||||||
from jax.sharding import PartitionSpec as P
|
|
||||||
|
|
||||||
size = jax.device_count()
|
|
||||||
assert (len(global_shape) == 3)
|
|
||||||
assert (len(pdims) == 2)
|
|
||||||
assert (
|
|
||||||
prod(pdims) == size
|
|
||||||
), "The product of pdims must be equal to the number of MPI processes"
|
|
||||||
|
|
||||||
local_shape = (global_shape[0] // pdims[1], global_shape[1] // pdims[0],
|
|
||||||
global_shape[2])
|
|
||||||
|
|
||||||
# Remap to the global array from the local slicei
|
|
||||||
devices = mesh_utils.create_device_mesh(pdims)
|
|
||||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
|
||||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
|
||||||
global_array = jax.make_array_from_callback(
|
|
||||||
global_shape,
|
|
||||||
sharding,
|
|
||||||
data_callback=lambda x: jax.random.normal(
|
|
||||||
jax.random.PRNGKey(process_slices(x)), local_shape))
|
|
||||||
|
|
||||||
return global_array, mesh
|
|
File diff suppressed because one or more lines are too long
|
@ -1,168 +0,0 @@
|
||||||
#!/bin/bash
|
|
||||||
##########################################
|
|
||||||
## SELECT EITHER tkc@a100 OR tkc@v100 ##
|
|
||||||
##########################################
|
|
||||||
#SBATCH --account tkc@a100
|
|
||||||
##########################################
|
|
||||||
#SBATCH --job-name=Particle-Mesh # nom du job
|
|
||||||
# Il est possible d'utiliser une autre partition que celle par default
|
|
||||||
# en activant l'une des 5 directives suivantes :
|
|
||||||
##########################################
|
|
||||||
## SELECT EITHER a100 or v100-32g ##
|
|
||||||
##########################################
|
|
||||||
#SBATCH -C a100
|
|
||||||
##########################################
|
|
||||||
#******************************************
|
|
||||||
##########################################
|
|
||||||
## SELECT Number of nodes and GPUs per node
|
|
||||||
## For A100 ntasks-per-node and gres=gpu should be 8
|
|
||||||
## For V100 ntasks-per-node and gres=gpu should be 4
|
|
||||||
##########################################
|
|
||||||
#SBATCH --nodes=1 # nombre de noeud
|
|
||||||
#SBATCH --ntasks-per-node=8 # nombre de tache MPI par noeud (= nombre de GPU par noeud)
|
|
||||||
#SBATCH --gres=gpu:8 # nombre de GPU par nœud (max 8 avec gpu_p2, gpu_p5)
|
|
||||||
##########################################
|
|
||||||
## Le nombre de CPU par tache doit etre adapte en fonction de la partition utilisee. Sachant
|
|
||||||
## qu'ici on ne reserve qu'un seul GPU par tache (soit 1/4 ou 1/8 des GPU du noeud suivant
|
|
||||||
## la partition), l'ideal est de reserver 1/4 ou 1/8 des CPU du noeud pour chaque tache:
|
|
||||||
##########################################
|
|
||||||
#SBATCH --cpus-per-task=8 # nombre de CPU par tache pour gpu_p5 (1/8 du noeud 8-GPU)
|
|
||||||
##########################################
|
|
||||||
# /!\ Attention, "multithread" fait reference a l'hyperthreading dans la terminologie Slurm
|
|
||||||
#SBATCH --hint=nomultithread # hyperthreading desactive
|
|
||||||
#SBATCH --time=04:00:00 # temps d'execution maximum demande (HH:MM:SS)
|
|
||||||
#SBATCH --output=%x_%N_a100.out # nom du fichier de sortie
|
|
||||||
#SBATCH --error=%x_%N_a100.out # nom du fichier d'erreur (ici commun avec la sortie)
|
|
||||||
#SBATCH --qos=qos_gpu-dev
|
|
||||||
#SBATCH --exclusive # ressources dediees
|
|
||||||
|
|
||||||
# Nettoyage des modules charges en interactif et herites par defaut
|
|
||||||
num_nodes=$SLURM_JOB_NUM_NODES
|
|
||||||
num_gpu_per_node=$SLURM_NTASKS_PER_NODE
|
|
||||||
OUTPUT_FOLDER_ARGS=1
|
|
||||||
# Calculate the number of GPUs
|
|
||||||
nb_gpus=$(( num_nodes * num_gpu_per_node))
|
|
||||||
|
|
||||||
module purge
|
|
||||||
|
|
||||||
# Decommenter la commande module suivante si vous utilisez la partition "gpu_p5"
|
|
||||||
# pour avoir acces aux modules compatibles avec cette partition
|
|
||||||
|
|
||||||
if [ $num_gpu_per_node -eq 8 ]; then
|
|
||||||
module load cpuarch/amd
|
|
||||||
source /gpfsdswork/projects/rech/tkc/commun/venv/a100/bin/activate
|
|
||||||
else
|
|
||||||
source /gpfsdswork/projects/rech/tkc/commun/venv/v100/bin/activate
|
|
||||||
fi
|
|
||||||
|
|
||||||
# Chargement des modules
|
|
||||||
module load nvidia-compilers/23.9 cuda/12.2.0 cudnn/8.9.7.29-cuda openmpi/4.1.5-cuda nccl/2.18.5-1-cuda cmake
|
|
||||||
module load nvidia-nsight-systems/2024.1.1.59
|
|
||||||
|
|
||||||
echo "The number of nodes allocated for this job is: $num_nodes"
|
|
||||||
echo "The number of GPUs allocated for this job is: $nb_gpus"
|
|
||||||
|
|
||||||
export ENABLE_PERFO_STEP=NVTX
|
|
||||||
export MPI4JAX_USE_CUDA_MPI=1
|
|
||||||
|
|
||||||
function profile_python() {
|
|
||||||
if [ $# -lt 1 ]; then
|
|
||||||
echo "Usage: profile_python <python_script> [arguments for the script]"
|
|
||||||
return 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
local script_name=$(basename "$1" .py)
|
|
||||||
local output_dir="prof_traces/$script_name"
|
|
||||||
local report_dir="out_prof/$gpu_name/$nb_gpus/$script_name"
|
|
||||||
|
|
||||||
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
|
||||||
local args=$(echo "${@:2}" | tr ' ' '_')
|
|
||||||
# Remove characters '/' and '-' from folder name
|
|
||||||
args=$(echo "$args" | tr -d '/-')
|
|
||||||
output_dir="prof_traces/$script_name/$args"
|
|
||||||
report_dir="out_prof/$gpu_name/$nb_gpus/$script_name/$args"
|
|
||||||
fi
|
|
||||||
|
|
||||||
mkdir -p "$output_dir"
|
|
||||||
mkdir -p "$report_dir"
|
|
||||||
|
|
||||||
srun nsys profile -t cuda,nvtx,osrt,mpi -o "$report_dir/report_rank%q{SLURM_PROCID}" python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
|
||||||
}
|
|
||||||
|
|
||||||
function run_python() {
|
|
||||||
if [ $# -lt 1 ]; then
|
|
||||||
echo "Usage: run_python <python_script> [arguments for the script]"
|
|
||||||
return 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
local script_name=$(basename "$1" .py)
|
|
||||||
local output_dir="traces/$script_name"
|
|
||||||
|
|
||||||
if [ $OUTPUT_FOLDER_ARGS -eq 1 ]; then
|
|
||||||
local args=$(echo "${@:2}" | tr ' ' '_')
|
|
||||||
# Remove characters '/' and '-' from folder name
|
|
||||||
args=$(echo "$args" | tr -d '/-')
|
|
||||||
output_dir="traces/$script_name/$args"
|
|
||||||
fi
|
|
||||||
|
|
||||||
mkdir -p "$output_dir"
|
|
||||||
|
|
||||||
srun python "$@" > "$output_dir/$script_name.out" 2> "$output_dir/$script_name.err" || true
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
# Echo des commandes lancees
|
|
||||||
set -x
|
|
||||||
|
|
||||||
# Pour la partition "gpu_p5", le code doit etre compile avec les modules compatibles
|
|
||||||
# Execution du code avec binding via bind_gpu.sh : 1 GPU par tache
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
declare -A pdims_table
|
|
||||||
# Define the table
|
|
||||||
pdims_table[1]="1x1"
|
|
||||||
pdims_table[4]="2x2 1x4"
|
|
||||||
pdims_table[8]="2x4 1x8"
|
|
||||||
pdims_table[16]="2x8 1x16"
|
|
||||||
pdims_table[32]="4x8 1x32"
|
|
||||||
pdims_table[64]="4x16 1x64"
|
|
||||||
pdims_table[128]="8x16 16x8 4x32 32x4 1x128 128x1 2x64 64x2"
|
|
||||||
pdims_table[160]="8x20 20x8 16x10 10x16 5x32 32x5 1x160 160x1 2x80 80x2 4x40 40x4"
|
|
||||||
|
|
||||||
|
|
||||||
#mpch=(128 256 512 1024 2048 4096)
|
|
||||||
grid=(1024 2048 4096)
|
|
||||||
|
|
||||||
pdim="${pdims_table[$nb_gpus]}"
|
|
||||||
echo "pdims: $pdim"
|
|
||||||
|
|
||||||
# Check if pdims is not empty
|
|
||||||
if [ -z "$pdim" ]; then
|
|
||||||
echo "pdims is empty"
|
|
||||||
echo "Number of gpus has to be 8, 16, 32, 64, 128 or 160"
|
|
||||||
echo "Number of nodes selected: $num_nodes"
|
|
||||||
echo "Number of gpus per node: $num_gpu_per_node"
|
|
||||||
exit 1
|
|
||||||
fi
|
|
||||||
|
|
||||||
# GPU name is a100 if num_gpu_per_node is 8, otherwise it is v100
|
|
||||||
|
|
||||||
if [ $num_gpu_per_node -eq 8 ]; then
|
|
||||||
gpu_name="a100"
|
|
||||||
else
|
|
||||||
gpu_name="v100"
|
|
||||||
fi
|
|
||||||
|
|
||||||
out_dir="out/$gpu_name/$nb_gpus"
|
|
||||||
|
|
||||||
echo "Output dir is : $out_dir"
|
|
||||||
|
|
||||||
for g in ${grid[@]}; do
|
|
||||||
for p in ${pdim[@]}; do
|
|
||||||
# halo is 1/4 of the grid size
|
|
||||||
halo_size=$((g / 4))
|
|
||||||
slaunch scripts/fastpm_jaxdecomp.py -m $g -b $g -p $p -hs $halo_size -ode diffrax -o $out_dir
|
|
||||||
done
|
|
||||||
done
|
|
Loading…
Add table
Reference in a new issue