mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-05-15 04:21:12 +00:00
update demo script
This commit is contained in:
parent
105568e8db
commit
4d944f01f2
2 changed files with 126 additions and 124 deletions
|
@ -11,11 +11,12 @@ size = jax.device_count()
|
|||
import jax.numpy as jnp
|
||||
import jax_cosmo as jc
|
||||
import numpy as np
|
||||
from diffrax import Dopri5,LeapfrogMidpoint, ODETerm, ConstantStepSize, SaveAt, diffeqsolve
|
||||
from diffrax import (ConstantStepSize, Dopri5, LeapfrogMidpoint, ODETerm,
|
||||
SaveAt, diffeqsolve)
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
from jax.experimental.multihost_utils import process_allgather
|
||||
from jaxpm.kernels import interpolate_power_spectrum
|
||||
from jaxpm.painting import cic_paint_dx
|
||||
from jaxpm.pm import linear_field, lpt, make_ode_fn
|
||||
|
@ -26,8 +27,10 @@ box_size = [float(size)] * 3
|
|||
snapshots = jnp.linspace(0.1, 1., 4)
|
||||
halo_size = 32
|
||||
pdims = (1, 1)
|
||||
mesh = None
|
||||
sharding = None
|
||||
if jax.device_count() > 1:
|
||||
pdims = (8, 1)
|
||||
pdims = (2, 4)
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('x', 'y'))
|
||||
sharding = NamedSharding(mesh, P('x', 'y'))
|
||||
|
@ -40,19 +43,27 @@ def run_simulation(omega_c, sigma8):
|
|||
pk = jc.power.linear_matter_power(
|
||||
jc.Planck15(Omega_c=omega_c, sigma8=sigma8), k)
|
||||
|
||||
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk)
|
||||
pk_fn = lambda x: interpolate_power_spectrum(x, k, pk, sharding)
|
||||
# Create initial conditions
|
||||
initial_conditions = linear_field(mesh_shape,
|
||||
box_size,
|
||||
pk_fn,
|
||||
sharding=sharding,
|
||||
seed=jax.random.PRNGKey(0))
|
||||
|
||||
cosmo = jc.Planck15(Omega_c=omega_c, sigma8=sigma8)
|
||||
|
||||
# Initial displacement
|
||||
dx, p, _ = lpt(cosmo, initial_conditions, 0.1, halo_size=halo_size)
|
||||
dx, p, _ = lpt(cosmo,
|
||||
initial_conditions,
|
||||
0.1,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
return initial_conditions, cic_paint_dx(dx,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding), None, None
|
||||
# Evolve the simulation forward
|
||||
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size)
|
||||
ode_fn = make_ode_fn(mesh_shape, halo_size=halo_size, sharding=sharding)
|
||||
term = ODETerm(
|
||||
lambda t, state, args: jnp.stack(ode_fn(state, t, args), axis=0))
|
||||
solver = LeapfrogMidpoint()
|
||||
|
@ -70,22 +81,17 @@ def run_simulation(omega_c, sigma8):
|
|||
|
||||
# Return the simulation volume at requested
|
||||
states = res.ys
|
||||
field = cic_paint_dx(dx, halo_size=halo_size)
|
||||
field = cic_paint_dx(dx, halo_size=halo_size, sharding=sharding)
|
||||
final_fields = [
|
||||
cic_paint_dx(state[0], halo_size=halo_size) for state in states
|
||||
cic_paint_dx(state[0], halo_size=halo_size, sharding=sharding)
|
||||
for state in states
|
||||
]
|
||||
|
||||
return initial_conditions, field, final_fields, res.stats
|
||||
|
||||
|
||||
# Run the simulation
|
||||
print(f"mesh {mesh}")
|
||||
if jax.device_count() > 1:
|
||||
with mesh:
|
||||
init, field, final_fields, stats = run_simulation(0.32, 0.8)
|
||||
|
||||
else:
|
||||
init, field, final_fields, stats = run_simulation(0.32, 0.8)
|
||||
init, field, final_fields, stats = run_simulation(0.32, 0.8)
|
||||
|
||||
# # Print the statistics
|
||||
print(stats)
|
||||
|
@ -101,17 +107,14 @@ if is_on_cluster():
|
|||
np.save(f'final_field_{i}_{rank}.npy',
|
||||
final_field.addressable_data(0))
|
||||
else:
|
||||
indices = np.arange(len(init.addressable_shards)).reshape(
|
||||
pdims[::-1]).transpose().flatten()
|
||||
print(f"indices {indices}")
|
||||
for i in np.arange(len(init.addressable_shards)):
|
||||
gathered_init = process_allgather(init, tiled=True)
|
||||
gathered_field = process_allgather(field, tiled=True)
|
||||
np.save(f'initial_conditions.npy', gathered_init)
|
||||
np.save(f'field.npy', gathered_field)
|
||||
|
||||
np.save(f'initial_conditions_{i}.npy', init.addressable_data(i))
|
||||
np.save(f'field_{i}.npy', field.addressable_data(i))
|
||||
|
||||
if final_fields is not None:
|
||||
for j, final_field in enumerate(final_fields):
|
||||
np.save(f'final_field_{j}_{i}.npy',
|
||||
final_field.addressable_data(i))
|
||||
if final_fields is not None:
|
||||
for i, final_field in enumerate(final_fields):
|
||||
gathered_final_field = process_allgather(final_field, tiled=True)
|
||||
np.save(f'final_field_{i}.npy', gathered_final_field)
|
||||
|
||||
print(f"Finished!!")
|
||||
|
|
|
@ -1,145 +1,144 @@
|
|||
import os
|
||||
from math import prod
|
||||
|
||||
|
||||
|
||||
setup_done = False
|
||||
on_cluster = False
|
||||
|
||||
|
||||
def is_on_cluster():
|
||||
global on_cluster
|
||||
return on_cluster
|
||||
global on_cluster
|
||||
return on_cluster
|
||||
|
||||
|
||||
def initialize_distributed():
|
||||
global setup_done
|
||||
global on_cluster
|
||||
if not setup_done:
|
||||
if "SLURM_JOB_ID" in os.environ:
|
||||
on_cluster = True
|
||||
print("Running on cluster")
|
||||
import jax
|
||||
jax.distributed.initialize()
|
||||
setup_done = True
|
||||
on_cluster = True
|
||||
else:
|
||||
print("Running locally")
|
||||
setup_done = True
|
||||
on_cluster = False
|
||||
os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
||||
os.environ["XLA_FLAGS"] = "--xla_force_host_platform_device_count=8"
|
||||
import jax
|
||||
|
||||
|
||||
global setup_done
|
||||
global on_cluster
|
||||
if not setup_done:
|
||||
if "SLURM_JOB_ID" in os.environ:
|
||||
on_cluster = True
|
||||
print("Running on cluster")
|
||||
import jax
|
||||
jax.distributed.initialize()
|
||||
setup_done = True
|
||||
on_cluster = True
|
||||
else:
|
||||
print("Running locally")
|
||||
setup_done = True
|
||||
on_cluster = False
|
||||
os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
||||
os.environ[
|
||||
"XLA_FLAGS"] = "--xla_force_host_platform_device_count=8"
|
||||
import jax
|
||||
|
||||
|
||||
def compare_sharding(sharding1, sharding2):
|
||||
from jaxdecomp._src.spmd_ops import get_pdims_from_sharding
|
||||
pdims1 = get_pdims_from_sharding(sharding1)
|
||||
pdims2 = get_pdims_from_sharding(sharding2)
|
||||
pdims1 = pdims1 + (1,) * (3 - len(pdims1))
|
||||
pdims2 = pdims2 + (1,) * (3 - len(pdims2))
|
||||
return pdims1 == pdims2
|
||||
from jaxdecomp._src.spmd_ops import get_pdims_from_sharding
|
||||
pdims1 = get_pdims_from_sharding(sharding1)
|
||||
pdims2 = get_pdims_from_sharding(sharding2)
|
||||
pdims1 = pdims1 + (1, ) * (3 - len(pdims1))
|
||||
pdims2 = pdims2 + (1, ) * (3 - len(pdims2))
|
||||
return pdims1 == pdims2
|
||||
|
||||
|
||||
def replace_none_or_zero(value):
|
||||
# Replace None or 0 with 1
|
||||
return 0 if value is None else value
|
||||
# Replace None or 0 with 1
|
||||
return 0 if value is None else value
|
||||
|
||||
|
||||
def process_slices(slices_tuple):
|
||||
|
||||
start_product = 1
|
||||
stop_product = 1
|
||||
start_product = 1
|
||||
stop_product = 1
|
||||
|
||||
for s in slices_tuple:
|
||||
# Multiply the start and stop values, replacing None/0 with 1
|
||||
start_product *= replace_none_or_zero(s.start)
|
||||
stop_product *= replace_none_or_zero(s.stop)
|
||||
for s in slices_tuple:
|
||||
# Multiply the start and stop values, replacing None/0 with 1
|
||||
start_product *= replace_none_or_zero(s.start)
|
||||
stop_product *= replace_none_or_zero(s.stop)
|
||||
|
||||
# Return the sum of the two products
|
||||
return int(start_product + stop_product)
|
||||
# Return the sum of the two products
|
||||
return int(start_product + stop_product)
|
||||
|
||||
|
||||
def device_arange(pdims):
|
||||
import jax
|
||||
from jax import numpy as jnp
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
import jax
|
||||
from jax import numpy as jnp
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
||||
|
||||
def generate_aranged(x):
|
||||
x_start = replace_none_or_zero(x[0].start)
|
||||
y_start = replace_none_or_zero(x[1].start)
|
||||
a = jnp.array([[x_start + y_start * pdims[0]]])
|
||||
print(f"index is {x} and value is {a}")
|
||||
return a
|
||||
def generate_aranged(x):
|
||||
x_start = replace_none_or_zero(x[0].start)
|
||||
y_start = replace_none_or_zero(x[1].start)
|
||||
a = jnp.array([[x_start + y_start * pdims[0]]])
|
||||
print(f"index is {x} and value is {a}")
|
||||
return a
|
||||
|
||||
aranged = jax.make_array_from_callback(
|
||||
mesh.devices.shape, sharding, data_callback=generate_aranged)
|
||||
aranged = jax.make_array_from_callback(mesh.devices.shape,
|
||||
sharding,
|
||||
data_callback=generate_aranged)
|
||||
|
||||
return aranged
|
||||
return aranged
|
||||
|
||||
|
||||
def create_ones_spmd_array(global_shape, pdims):
|
||||
|
||||
import jax
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
import jax
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
size = jax.device_count()
|
||||
assert (len(global_shape) == 3)
|
||||
assert (len(pdims) == 2)
|
||||
assert (prod(pdims) == size
|
||||
), "The product of pdims must be equal to the number of MPI processes"
|
||||
size = jax.device_count()
|
||||
assert (len(global_shape) == 3)
|
||||
assert (len(pdims) == 2)
|
||||
assert (
|
||||
prod(pdims) == size
|
||||
), "The product of pdims must be equal to the number of MPI processes"
|
||||
|
||||
local_shape = (global_shape[0] // pdims[1], global_shape[1] // pdims[0],
|
||||
global_shape[2])
|
||||
local_shape = (global_shape[0] // pdims[1], global_shape[1] // pdims[0],
|
||||
global_shape[2])
|
||||
|
||||
# Remap to the global array from the local slice
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
||||
global_array = jax.make_array_from_callback(
|
||||
global_shape,
|
||||
sharding,
|
||||
data_callback=lambda _: jax.numpy.ones(local_shape))
|
||||
# Remap to the global array from the local slice
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
||||
global_array = jax.make_array_from_callback(
|
||||
global_shape,
|
||||
sharding,
|
||||
data_callback=lambda _: jax.numpy.ones(local_shape))
|
||||
|
||||
return global_array, mesh
|
||||
return global_array, mesh
|
||||
|
||||
|
||||
# Helper function to create a 3D array and remap it to the global array
|
||||
def create_spmd_array(global_shape, pdims):
|
||||
|
||||
import jax
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
import jax
|
||||
from jax.experimental import mesh_utils
|
||||
from jax.sharding import Mesh, NamedSharding
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
size = jax.device_count()
|
||||
assert (len(global_shape) == 3)
|
||||
assert (len(pdims) == 2)
|
||||
assert (prod(pdims) == size
|
||||
), "The product of pdims must be equal to the number of MPI processes"
|
||||
size = jax.device_count()
|
||||
assert (len(global_shape) == 3)
|
||||
assert (len(pdims) == 2)
|
||||
assert (
|
||||
prod(pdims) == size
|
||||
), "The product of pdims must be equal to the number of MPI processes"
|
||||
|
||||
local_shape = (global_shape[0] // pdims[1], global_shape[1] // pdims[0],
|
||||
global_shape[2])
|
||||
local_shape = (global_shape[0] // pdims[1], global_shape[1] // pdims[0],
|
||||
global_shape[2])
|
||||
|
||||
# Remap to the global array from the local slicei
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
||||
global_array = jax.make_array_from_callback(
|
||||
global_shape,
|
||||
sharding,
|
||||
data_callback=lambda x: jax.random.normal(
|
||||
jax.random.PRNGKey(process_slices(x)), local_shape))
|
||||
|
||||
return global_array, mesh
|
||||
# Remap to the global array from the local slicei
|
||||
devices = mesh_utils.create_device_mesh(pdims)
|
||||
mesh = Mesh(devices.T, axis_names=('z', 'y'))
|
||||
sharding = NamedSharding(mesh, P('z', 'y'))
|
||||
global_array = jax.make_array_from_callback(
|
||||
global_shape,
|
||||
sharding,
|
||||
data_callback=lambda x: jax.random.normal(
|
||||
jax.random.PRNGKey(process_slices(x)), local_shape))
|
||||
|
||||
return global_array, mesh
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue