Implemented a few fixes to the FFT

This commit is contained in:
EiffL 2022-10-22 13:23:13 -04:00
parent 1948eae9ed
commit 429813ad92
2 changed files with 88 additions and 22 deletions

View file

@ -4,7 +4,7 @@ import jax.numpy as jnp
import mpi4jax import mpi4jax
def fft3d(arr, token=None, comms=None): def fft3d(arr, comms=None):
""" Computes forward FFT, note that the output is transposed """ Computes forward FFT, note that the output is transposed
""" """
if comms is not None: if comms is not None:
@ -20,7 +20,7 @@ def fft3d(arr, token=None, comms=None):
else: else:
arr = arr.reshape(shape[:-1]+[nx, shape[-1] // nx]) arr = arr.reshape(shape[:-1]+[nx, shape[-1] // nx])
arr = arr.transpose([2, 1, 3, 0]) # [y, z, x] arr = arr.transpose([2, 1, 3, 0]) # [y, z, x]
arr, token = mpi4jax.alltoall(arr, comm=comms[0], token=token) arr, token = mpi4jax.alltoall(arr, comm=comms[0])
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [y, z, x] arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [y, z, x]
# Second FFT along x # Second FFT along x
@ -35,15 +35,10 @@ def fft3d(arr, token=None, comms=None):
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [z, x, y] arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [z, x, y]
# Third FFT along y # Third FFT along y
arr = jnp.fft.fft(arr) return jnp.fft.fft(arr)
if comms == None:
return arr
else:
return arr, token
def ifft3d(arr, token=None, comms=None): def ifft3d(arr, comms=None):
""" Let's assume that the data is distributed accross x """ Let's assume that the data is distributed accross x
""" """
if comms is not None: if comms is not None:
@ -59,7 +54,7 @@ def ifft3d(arr, token=None, comms=None):
else: else:
arr = arr.reshape(shape[:-1]+[ny, shape[-1] // ny]) arr = arr.reshape(shape[:-1]+[ny, shape[-1] // ny])
arr = arr.transpose([2, 0, 3, 1]) # Now [z, y, x] arr = arr.transpose([2, 0, 3, 1]) # Now [z, y, x]
arr, token = mpi4jax.alltoall(arr, comm=comms[1], token=token) arr, token = mpi4jax.alltoall(arr, comm=comms[1])
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [z,y,x] arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [z,y,x]
# Second FFT along x # Second FFT along x
@ -73,22 +68,17 @@ def ifft3d(arr, token=None, comms=None):
arr, token = mpi4jax.alltoall(arr, comm=comms[0], token=token) arr, token = mpi4jax.alltoall(arr, comm=comms[0], token=token)
arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [x,y,z] arr = arr.transpose([1, 2, 0, 3]).reshape(shape) # Now [x,y,z]
# Third FFT along y # Third FFT along z
arr = jnp.fft.fft(arr) return jnp.fft.ifft(arr)
if comms == None:
return arr
else:
return arr, token
def halo_reduce(arr, halo_size, token=None, comms=None): def halo_reduce(arr, halo_size, comms=None):
# Perform halo exchange along x # Perform halo exchange along x
rank_x = comms[0].Get_rank() rank_x = comms[0].Get_rank()
margin = arr[-2*halo_size:] margin = arr[-2*halo_size:]
margin, token = mpi4jax.sendrecv(margin, margin, rank_x-1, rank_x+1, margin, token = mpi4jax.sendrecv(margin, margin, rank_x-1, rank_x+1,
comm=comms[0], token=token) comm=comms[0])
arr = arr.at[:2*halo_size].add(margin) arr = arr.at[:2*halo_size].add(margin)
margin = arr[:2*halo_size] margin = arr[:2*halo_size]
@ -108,7 +98,8 @@ def halo_reduce(arr, halo_size, token=None, comms=None):
comm=comms[1], token=token) comm=comms[1], token=token)
arr = arr.at[:, -2*halo_size:].add(margin) arr = arr.at[:, -2*halo_size:].add(margin)
return arr, token return arr
def zeros(shape, comms=None): def zeros(shape, comms=None):
""" Initialize an array of given global shape """ Initialize an array of given global shape
@ -121,3 +112,17 @@ def zeros(shape, comms=None):
ny = comms[1].Get_size() ny = comms[1].Get_size()
return jnp.zeros([shape[0]//nx, shape[1]//ny]+list(shape[2:])) return jnp.zeros([shape[0]//nx, shape[1]//ny]+list(shape[2:]))
def normal(key, shape, comms=None):
""" Generates a normal variable for the given
global shape.
"""
if comms is None:
return jax.random.normal(key, shape)
nx = comms[0].Get_size()
ny = comms[1].Get_size()
return jax.random.normal(key,
[shape[0]//nx, shape[1]//ny]+list(shape[2:]))

61
scripts/test_fft3d.py Normal file
View file

@ -0,0 +1,61 @@
from mpi4py import MPI
import jax
import jax.numpy as jnp
import mpi4jax
from jaxpm.ops import fft3d, ifft3d, normal
# Create communicators
world = MPI.COMM_WORLD
rank = world.Get_rank()
size = world.Get_size()
cart_comm = MPI.COMM_WORLD.Create_cart(dims=[2, 2],
periods=[True, True])
comms = [cart_comm.Sub([True, False]),
cart_comm.Sub([False, True])]
if rank == 0:
print("Communication setup done!")
# Setup random keys
master_key = jax.random.PRNGKey(42)
key = jax.random.split(master_key, size)[rank]
# Size of the FFT
N = 256
mesh_shape = [N, N, N]
# Generate a random gaussian variable for the global
# mesh shape
original_array = normal(key, mesh_shape, comms=comms)
# Run a forward FFT
karray = jax.jit(lambda x: fft3d(x, comms=comms))(original_array)
rarray = jax.jit(lambda x: ifft3d(x, comms=comms))(karray)
# Testing that the fft is indeed invertible
print("I'm ", rank, abs(rarray.real - original_array).mean())
# Testing that the FFT is actually what we expect
total_array, token = mpi4jax.allgather(original_array, comm=comms[0])
total_array = total_array.reshape([N, N//2, N])
total_array, token = mpi4jax.allgather(
total_array.transpose([1, 0, 2]), comm=comms[1], token=token)
total_array = total_array.reshape([N, N, N])
total_array = total_array.transpose([1, 0, 2])
total_karray, token = mpi4jax.allgather(karray, comm=comms[0], token=token)
total_karray = total_karray.reshape([N, N//2, N])
total_karray, token = mpi4jax.allgather(
total_karray.transpose([1, 0, 2]), comm=comms[1], token=token)
total_karray = total_karray.reshape([N, N, N])
total_karray = total_karray.transpose([1, 0, 2])
print('FFT test:', rank, abs(jnp.fft.fftn(
total_array).transpose([2, 0, 1]) - total_karray).mean())
if rank == 0:
print("For reference, the mean value of the fft is", jnp.abs(jnp.fft.fftn(
total_array)).mean())