Allow env variable control of caching in growth

This commit is contained in:
Wassim Kabalan 2025-06-08 10:45:04 +02:00
parent e7112e0c25
commit 41ae41ace3

View file

@ -1,3 +1,5 @@
import os
import jax.numpy as np import jax.numpy as np
from jax.numpy import interp from jax.numpy import interp
from jax_cosmo.background import * from jax_cosmo.background import *
@ -243,56 +245,61 @@ def _growth_factor_ODE(cosmo, a, log10_amin=-3, steps=256, eps=1e-4):
Growth factor computed at requested scale factor Growth factor computed at requested scale factor
""" """
# Check if growth has already been computed # Check if growth has already been computed
#if not "background.growth_factor" in cosmo._workspace.keys(): CACHING_ACTIVATED = os.environ.get("JC_CACHE", "1") == "1"
# Compute tabulated array if CACHING_ACTIVATED and "background.growth_factor" in cosmo._workspace.keys(
atab = np.logspace(log10_amin, 0.0, steps) ):
cache = cosmo._workspace["background.growth_factor"]
else:
# Compute tabulated array
atab = np.logspace(log10_amin, 0.0, steps)
def D_derivs(y, x): def D_derivs(y, x):
q = (2.0 - 0.5 * q = (2.0 - 0.5 *
(Omega_m_a(cosmo, x) + (Omega_m_a(cosmo, x) +
(1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x))) / x (1.0 + 3.0 * w(cosmo, x)) * Omega_de_a(cosmo, x))) / x
r = 1.5 * Omega_m_a(cosmo, x) / x / x r = 1.5 * Omega_m_a(cosmo, x) / x / x
g1, g2 = y[0] g1, g2 = y[0]
f1, f2 = y[1] f1, f2 = y[1]
dy1da = [f1, -q * f1 + r * g1] dy1da = [f1, -q * f1 + r * g1]
dy2da = [f2, -q * f2 + r * g2 - r * g1**2] dy2da = [f2, -q * f2 + r * g2 - r * g1**2]
return np.array([[dy1da[0], dy2da[0]], [dy1da[1], dy2da[1]]]) return np.array([[dy1da[0], dy2da[0]], [dy1da[1], dy2da[1]]])
y0 = np.array([[atab[0], -3.0 / 7 * atab[0]**2], y0 = np.array([[atab[0], -3.0 / 7 * atab[0]**2],
[1.0, -6.0 / 7 * atab[0]]]) [1.0, -6.0 / 7 * atab[0]]])
y = odeint(D_derivs, y0, atab) y = odeint(D_derivs, y0, atab)
# compute second order derivatives growth # compute second order derivatives growth
dyda2 = D_derivs(np.transpose(y, (1, 2, 0)), atab) dyda2 = D_derivs(np.transpose(y, (1, 2, 0)), atab)
dyda2 = np.transpose(dyda2, (2, 0, 1)) dyda2 = np.transpose(dyda2, (2, 0, 1))
# Normalize results # Normalize results
y1 = y[:, 0, 0] y1 = y[:, 0, 0]
gtab = y1 / y1[-1] gtab = y1 / y1[-1]
y2 = y[:, 0, 1] y2 = y[:, 0, 1]
g2tab = y2 / y2[-1] g2tab = y2 / y2[-1]
# To transform from dD/da to dlnD/dlna: dlnD/dlna = a / D dD/da # To transform from dD/da to dlnD/dlna: dlnD/dlna = a / D dD/da
ftab = y[:, 1, 0] / y1[-1] * atab / gtab ftab = y[:, 1, 0] / y1[-1] * atab / gtab
f2tab = y[:, 1, 1] / y2[-1] * atab / g2tab f2tab = y[:, 1, 1] / y2[-1] * atab / g2tab
# Similarly for second order derivatives # Similarly for second order derivatives
# Note: these factors are not accessible as parent functions yet # Note: these factors are not accessible as parent functions yet
# since it is unclear what to refer to them with. # since it is unclear what to refer to them with.
htab = dyda2[:, 1, 0] / y1[-1] * atab / gtab htab = dyda2[:, 1, 0] / y1[-1] * atab / gtab
h2tab = dyda2[:, 1, 1] / y2[-1] * atab / g2tab h2tab = dyda2[:, 1, 1] / y2[-1] * atab / g2tab
cache = {
"a": atab,
"g": gtab,
"f": ftab,
"h": htab,
"g2": g2tab,
"f2": f2tab,
"h2": h2tab,
}
if CACHING_ACTIVATED:
cosmo._workspace["background.growth_factor"] = cache
cache = { return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0), cache
"a": atab,
"g": gtab,
"f": ftab,
"h": htab,
"g2": g2tab,
"f2": f2tab,
"h2": h2tab,
}
return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0) , cache
def _growth_rate_ODE(cosmo, a): def _growth_rate_ODE(cosmo, a):
@ -317,6 +324,7 @@ def _growth_rate_ODE(cosmo, a):
cache = _growth_factor_ODE(cosmo, np.atleast_1d(1.0))[1] cache = _growth_factor_ODE(cosmo, np.atleast_1d(1.0))[1]
return interp(a, cache["a"], cache["f"]) return interp(a, cache["a"], cache["f"])
def _growth_factor_second_ODE(cosmo, a): def _growth_factor_second_ODE(cosmo, a):
"""Compute second order growth factor D2(a) at a given scale factor, """Compute second order growth factor D2(a) at a given scale factor,
normalised such that D(a=1) = 1. normalised such that D(a=1) = 1.
@ -384,7 +392,11 @@ def _growth_factor_gamma(cosmo, a, log10_amin=-3, steps=128):
""" """
# Check if growth has already been computed, if not, compute it # Check if growth has already been computed, if not, compute it
if not "background.growth_factor" in cosmo._workspace.keys(): CACHING_ACTIVATED = os.environ.get("JC_CACHE", "1") == "1"
if CACHING_ACTIVATED and "background.growth_factor" in cosmo._workspace.keys(
):
cache = cosmo._workspace["background.growth_factor"]
else:
# Compute tabulated array # Compute tabulated array
atab = np.logspace(log10_amin, 0.0, steps) atab = np.logspace(log10_amin, 0.0, steps)
@ -395,9 +407,8 @@ def _growth_factor_gamma(cosmo, a, log10_amin=-3, steps=128):
gtab = np.exp(odeint(integrand, np.log(atab[0]), np.log(atab))) gtab = np.exp(odeint(integrand, np.log(atab[0]), np.log(atab)))
gtab = gtab / gtab[-1] # Normalize to a=1. gtab = gtab / gtab[-1] # Normalize to a=1.
cache = {"a": atab, "g": gtab} cache = {"a": atab, "g": gtab}
cosmo._workspace["background.growth_factor"] = cache if CACHING_ACTIVATED:
else: cosmo._workspace["background.growth_factor"] = cache
cache = cosmo._workspace["background.growth_factor"]
return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0) return np.clip(interp(a, cache["a"], cache["g"]), 0.0, 1.0)
@ -522,6 +533,7 @@ def gp(cosmo, a):
D1f = f1 * g1 / a D1f = f1 * g1 / a
return D1f return D1f
def dGfa(cosmo, a): def dGfa(cosmo, a):
r""" Derivative of Gf against a r""" Derivative of Gf against a