mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-06-29 08:31:11 +00:00
update formatting
This commit is contained in:
parent
6408aff1de
commit
319942a6bc
5 changed files with 113 additions and 96 deletions
45
jaxpm/pm.py
45
jaxpm/pm.py
|
@ -1,15 +1,16 @@
|
|||
from functools import partial
|
||||
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
import jax_cosmo as jc
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
from jaxpm.distributed import autoshmap, fft3d, get_local_shape, ifft3d
|
||||
from jaxpm.growth import dGfa, growth_factor, growth_rate
|
||||
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel, laplace_kernel,
|
||||
longrange_kernel)
|
||||
from jaxpm.painting import cic_paint, cic_read
|
||||
from jaxpm.distributed import fft3d, ifft3d, autoshmap, get_local_shape
|
||||
|
||||
from functools import partial
|
||||
|
||||
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0):
|
||||
"""
|
||||
|
@ -100,28 +101,28 @@ def make_ode_fn(mesh_shape):
|
|||
return nbody_ode
|
||||
|
||||
|
||||
def pgd_correction(pos, params):
|
||||
"""
|
||||
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671
|
||||
args:
|
||||
pos: particle positions [npart, 3]
|
||||
params: [alpha, kl, ks] pgd parameters
|
||||
"""
|
||||
kvec = fftk(mesh_shape)
|
||||
def pgd_correction(pos, params):
|
||||
"""
|
||||
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method, based on https://arxiv.org/abs/1804.00671
|
||||
args:
|
||||
pos: particle positions [npart, 3]
|
||||
params: [alpha, kl, ks] pgd parameters
|
||||
"""
|
||||
kvec = fftk(mesh_shape)
|
||||
|
||||
delta = cic_paint(jnp.zeros(mesh_shape), pos)
|
||||
alpha, kl, ks = params
|
||||
delta_k = jnp.fft.rfftn(delta)
|
||||
PGD_range = PGD_kernel(kvec, kl, ks)
|
||||
delta = cic_paint(jnp.zeros(mesh_shape), pos)
|
||||
alpha, kl, ks = params
|
||||
delta_k = jnp.fft.rfftn(delta)
|
||||
PGD_range = PGD_kernel(kvec, kl, ks)
|
||||
|
||||
pot_k_pgd = (delta_k * laplace_kernel(kvec)) * PGD_range
|
||||
pot_k_pgd = (delta_k * laplace_kernel(kvec)) * PGD_range
|
||||
|
||||
forces_pgd = jnp.stack([
|
||||
cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k_pgd), pos)
|
||||
for i in range(3)
|
||||
],
|
||||
axis=-1)
|
||||
forces_pgd = jnp.stack([
|
||||
cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i) * pot_k_pgd), pos)
|
||||
for i in range(3)
|
||||
],
|
||||
axis=-1)
|
||||
|
||||
dpos_pgd = forces_pgd * alpha
|
||||
dpos_pgd = forces_pgd * alpha
|
||||
|
||||
return dpos_pgd
|
||||
return dpos_pgd
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue