Update for jaxDecomp pure JAX

This commit is contained in:
Wassim KABALAN 2024-08-07 23:52:13 +02:00
parent 831291c1f9
commit 2ea05a1cd6
9 changed files with 214 additions and 532 deletions

View file

@ -25,7 +25,7 @@ from jax.sharding import PartitionSpec as P
from jaxpm.kernels import interpolate_power_spectrum
from jaxpm.painting import cic_paint_dx
from jaxpm.pm import linear_field, lpt, make_ode_fn
from jax import make_jaxpr
def run_simulation(mesh_shape,
@ -33,7 +33,10 @@ def run_simulation(mesh_shape,
halo_size,
solver_choice,
iterations,
pdims=None):
hlo_print,
trace,
pdims=None,
output_path="."):
@jax.jit
def simulate(omega_c, sigma8):
@ -60,7 +63,6 @@ def run_simulation(mesh_shape,
solver = Tsit5()
elif solver_choice == "lpt":
lpt_field = cic_paint_dx(dx, halo_size=halo_size)
print(f"TYPE of lpt_field: {type(lpt_field)}")
return lpt_field, {"num_steps": 0}
else:
raise ValueError(
@ -92,16 +94,37 @@ def run_simulation(mesh_shape,
def run():
# Warm start
chrono_fun = Timer()
RangePush("warmup")
final_field, stats = chrono_fun.chrono_jit(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
sync_global_devices("warmup")
for i in range(iterations):
RangePush(f"sim iter {i}")
final_field, stats = chrono_fun.chrono_fun(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
return final_field, stats, chrono_fun
if hlo_print:
jaxpr = make_jaxpr(simulate)(0.32, 0.8)
lowered = jax.jit(simulate).lower(0.32, 0.8)
lower_as_text = lowered.as_text()
compiled = lowered.compile()
compiled_again = jax.jit(simulate).lower(0.32, 0.8).compile()
return jaxpr , compiled , compiled_again
elif trace:
jit_output = f"{output_path}/jit_trace"
first_run_output = f"{output_path}/first_run_trace"
second_run_output = f"{output_path}/second_run_trace"
with jax.profiler.trace(jit_output , create_perfetto_trace=True):
final_field, stats = simulate(0.32, 0.8)
final_field.block_until_ready()
with jax.profiler.trace(first_run_output , create_perfetto_trace=True):
final_field, stats = simulate(0.32, 0.8)
final_field.block_until_ready()
with jax.profiler.trace(second_run_output , create_perfetto_trace=True):
final_field, stats = simulate(0.32, 0.8)
final_field.block_until_ready()
else:
chrono_fun = Timer()
RangePush("warmup")
final_field, stats = chrono_fun.chrono_jit(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
sync_global_devices("warmup")
for i in range(iterations):
RangePush(f"sim iter {i}")
final_field, stats = chrono_fun.chrono_fun(simulate, 0.32, 0.8 , ndarray_arg = 0)
RangePop()
return final_field, stats, chrono_fun
if jax.device_count() > 1:
devices = mesh_utils.create_device_mesh(pdims)
@ -143,7 +166,7 @@ if __name__ == "__main__":
'--halo_size',
type=int,
help='Halo size',
required=True)
default=None)
parser.add_argument('-s',
'--solver',
type=str,
@ -153,12 +176,7 @@ if __name__ == "__main__":
"LeapfrogMidpoint", "leapfrogmidpoint", "lfm",
"lpt"
],
required=True)
parser.add_argument('-i',
'--iterations',
type=int,
help='Number of iterations',
default=10)
default="lpt")
parser.add_argument('-o',
'--output_path',
type=str,
@ -173,16 +191,33 @@ if __name__ == "__main__":
type=int,
help='Number of nodes',
default=1)
parser.add_argument('-i',
'--iterations',
type=int,
help='Number of iterations',
default=10)
group = parser.add_mutually_exclusive_group()
group.add_argument('-hlo',
'--hlo_print',
action='store_true',
help='Print hlo generated by XLA')
group.add_argument('-t',
'--trace',
action='store_true',
help='Profile using tensorboard')
args = parser.parse_args()
mesh_size = args.mesh_size
box_size = [args.box_size] * 3
halo_size = args.halo_size
halo_size = args.mesh_size // 8 if args.halo_size is None else args.halo_size
solver_choice = args.solver
iterations = args.iterations
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
hlo_print = args.hlo_print
trace = args.trace
nb_gpus = jax.device_count()
print(f"solver choice: {solver_choice}")
match solver_choice:
case "Dopri5" | "dopri5"| "d5":
@ -205,45 +240,81 @@ if __name__ == "__main__":
if args.pdims:
pdims = tuple(map(int, args.pdims.split("x")))
else:
pdims = (1, 1)
pdims = (1, jax.device_count())
pdm_str = f"{pdims[0]}x{pdims[1]}"
mesh_shape = [mesh_size] * 3
final_field , stats, chrono_fun = run_simulation(mesh_shape, box_size, halo_size, solver_choice, iterations, pdims)
print(f"shape of final_field {final_field.shape} and sharding spec {final_field.sharding} and local shape {final_field.addressable_data(0).shape}")
if trace:
trace_folder = f"{output_path}/profiling/jaxpm/{nb_gpus}/{mesh_shape[0]}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
os.makedirs(trace_folder, exist_ok=True)
run_simulation(mesh_shape, box_size, halo_size, solver_choice, iterations, hlo_print, trace, pdims, trace_folder)
print(f"Profiling done! Check {trace_folder}")
elif hlo_print:
hlo_folder = f"{output_path}/hlo/jaxpm/{nb_gpus}/{mesh_shape[0]}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
os.makedirs(hlo_folder, exist_ok=True)
jaxpr , compiled , compiled2 = run_simulation(mesh_shape, box_size, halo_size, solver_choice, iterations, hlo_print, trace, pdims, hlo_folder)
print(f"type of memory analysis {type(compiled.memory_analysis())}")
print(f"memory analysis {compiled.memory_analysis()}")
print(f"memory analysis again {compiled2.memory_analysis()}")
jax.tree.map(lambda x: print(x), compiled.memory_analysis())
with open(f'{hlo_folder}/hlo_jaxpm.md', 'w') as f:
f.write(f"# JAXPM HLO\n")
f.write(f"## Args: {args}\n")
f.write(f"## JAXPR is \n")
f.write(f'---\n')
f.write(f"{jaxpr}\n")
f.write(f'---\n')
f.write(f"Lowered as text is \n")
f.write(f'---\n')
# f.write(f"{lower_as_text}\n")
f.write(f'---\n')
f.write(f"Compiled is \n")
f.write(f'---\n')
f.write(f"{compiled.as_text()}\n")
f.write(f"Cost analysis is \n")
f.write(f'---\n')
f.write(f"{compiled.cost_analysis()[0]['flops']}\n")
f.write(f'---\n')
f.write(f"Memory analysis is \n")
f.write(f'---\n')
f.write(f"{compiled.memory_analysis()}\n")
f.write(f'---\n')
metadata = {
'rank': rank,
'function_name': f'JAXPM-{solver_choice}',
'precision': args.precision,
'x': str(mesh_size),
'y': str(mesh_size),
'z': str(stats["num_steps"]),
'px': str(pdims[0]),
'py': str(pdims[1]),
'backend': 'NCCL',
'nodes': str(args.nodes)
}
# Print the results to a CSV file
chrono_fun.print_to_csv(f'{output_path}/jaxpm_benchmark.csv', **metadata)
print(f"Saved HLO to {hlo_folder}")
else:
final_field, stats, chrono_fun = run_simulation(mesh_shape, box_size, halo_size, solver_choice, iterations, hlo_print, trace, pdims, output_path)
print(f"shape of final_field {final_field.shape} and sharding spec {final_field.sharding} and local shape {final_field.addressable_data(0).shape}")
metadata = {
'rank': rank,
'function_name': f'JAXPM-{solver_choice}',
'precision': args.precision,
'x': str(mesh_size),
'y': str(mesh_size),
'z': str(stats["num_steps"]),
'px': str(pdims[0]),
'py': str(pdims[1]),
'backend': 'NCCL',
'nodes': str(args.nodes)
}
# Print the results to a CSV file
chrono_fun.print_to_csv(f'{output_path}/jaxpm_benchmark.csv', **metadata)
# Save the final field
nb_gpus = jax.device_count()
pdm_str = f"{pdims[0]}x{pdims[1]}"
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
os.makedirs(field_folder, exist_ok=True)
with open(f'{field_folder}/jaxpm.log', 'w') as f:
f.write(f"Args: {args}\n")
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
for i , time in enumerate(chrono_fun.times):
f.write(f"Time {i}: {time:.4f} ms\n")
f.write(f"Stats: {stats}\n")
if args.save_fields:
np.save(f'{field_folder}/final_field_0_{rank}.npy',
final_field.addressable_data(0))
# Save the final field
print(f"Finished! ")
print(f"Stats {stats}")
print(f"Saving to {output_path}/jax_pm_benchmark.csv")
print(f"Saving field and logs in {field_folder}")
field_folder = f"{output_path}/final_field/jaxpm/{nb_gpus}/{mesh_size}_{int(box_size[0])}/{pdm_str}/{solver_choice}/halo_{halo_size}"
os.makedirs(field_folder, exist_ok=True)
with open(f'{field_folder}/jaxpm.log', 'w') as f:
f.write(f"Args: {args}\n")
f.write(f"JIT time: {chrono_fun.jit_time:.4f} ms\n")
for i , time in enumerate(chrono_fun.times):
f.write(f"Time {i}: {time:.4f} ms\n")
f.write(f"Stats: {stats}\n")
if args.save_fields:
np.save(f'{field_folder}/final_field_0_{rank}.npy',
final_field.addressable_data(0))
print(f"Finished! ")
print(f"Stats {stats}")
print(f"Saving to {output_path}/jax_pm_benchmark.csv")
print(f"Saving field and logs in {field_folder}")