mirror of
https://github.com/DifferentiableUniverseInitiative/JaxPM.git
synced 2025-04-07 12:20:54 +00:00
update code
This commit is contained in:
parent
e0c118a540
commit
21373b89ee
7 changed files with 84 additions and 100 deletions
|
@ -82,7 +82,7 @@ def slice_unpad_impl(x, pad_width):
|
|||
|
||||
def slice_pad(x, pad_width, sharding):
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
if not gpu_mesh is None and not (gpu_mesh.empty) and (
|
||||
if gpu_mesh is not None and not (gpu_mesh.empty) and (
|
||||
pad_width[0][0] > 0 or pad_width[1][0] > 0):
|
||||
assert sharding is not None
|
||||
spec = sharding.spec
|
||||
|
@ -96,7 +96,7 @@ def slice_pad(x, pad_width, sharding):
|
|||
|
||||
def slice_unpad(x, pad_width, sharding):
|
||||
mesh = sharding.mesh if sharding is not None else None
|
||||
if not mesh is None and not (mesh.empty) and (pad_width[0][0] > 0
|
||||
if mesh is not None and not (mesh.empty) and (pad_width[0][0] > 0
|
||||
or pad_width[1][0] > 0):
|
||||
assert sharding is not None
|
||||
spec = sharding.spec
|
||||
|
@ -122,20 +122,6 @@ def get_local_shape(mesh_shape, sharding=None):
|
|||
]
|
||||
|
||||
|
||||
def zeros(mesh_shape, sharding=None):
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
if not gpu_mesh is None and not (gpu_mesh.empty):
|
||||
local_mesh_shape = get_local_shape(mesh_shape, sharding)
|
||||
spec = sharding.spec
|
||||
return shard_map(
|
||||
partial(jnp.zeros, shape=(local_mesh_shape), dtype='float32'),
|
||||
mesh=gpu_mesh,
|
||||
in_specs=(),
|
||||
out_specs=spec)() # yapf: disable
|
||||
else:
|
||||
return jnp.zeros(mesh_shape)
|
||||
|
||||
|
||||
def __axis_names(spec):
|
||||
if len(spec) == 1:
|
||||
x_axis, = spec
|
||||
|
@ -158,7 +144,7 @@ def __axis_names(spec):
|
|||
def uniform_particles(mesh_shape, sharding=None):
|
||||
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
if not gpu_mesh is None and not (gpu_mesh.empty):
|
||||
if gpu_mesh is not None and not (gpu_mesh.empty):
|
||||
local_mesh_shape = get_local_shape(mesh_shape, sharding)
|
||||
spec = sharding.spec
|
||||
x_axis, y_axis, single_axis = __axis_names(spec)
|
||||
|
@ -183,7 +169,7 @@ def uniform_particles(mesh_shape, sharding=None):
|
|||
def normal_field(mesh_shape, seed, sharding=None):
|
||||
"""Generate a Gaussian random field with the given power spectrum."""
|
||||
gpu_mesh = sharding.mesh if sharding is not None else None
|
||||
if not gpu_mesh is None and not (gpu_mesh.empty):
|
||||
if gpu_mesh is not None and not (gpu_mesh.empty):
|
||||
local_mesh_shape = get_local_shape(mesh_shape, sharding)
|
||||
|
||||
size = jax.device_count()
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import jax.numpy as jnp
|
||||
import jax_cosmo as jc
|
||||
import numpy as np
|
||||
from jax.lib.xla_client import FftType
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
|
|
@ -204,7 +204,7 @@ def cic_paint_dx(displacements,
|
|||
return grid_mesh
|
||||
|
||||
|
||||
def cic_read_dx_impl(grid_mesh, halo_size):
|
||||
def cic_read_dx_impl(grid_mesh, disp, halo_size):
|
||||
|
||||
halo_x, _ = halo_size[0]
|
||||
halo_y, _ = halo_size[1]
|
||||
|
@ -220,14 +220,15 @@ def cic_read_dx_impl(grid_mesh, halo_size):
|
|||
pmid = jnp.stack([a + halo_x, b + halo_y, c], axis=-1)
|
||||
|
||||
pmid = pmid.reshape([-1, 3])
|
||||
disp = disp.reshape([-1, 3])
|
||||
|
||||
return gather(pmid, jnp.zeros_like(pmid),
|
||||
return gather(pmid, disp,
|
||||
grid_mesh).reshape(original_shape)
|
||||
|
||||
|
||||
@partial(jax.jit, static_argnums=(1, 2))
|
||||
def cic_read_dx(grid_mesh, halo_size=0, sharding=None):
|
||||
# return mesh
|
||||
@partial(jax.jit, static_argnums=(2, 3))
|
||||
def cic_read_dx(grid_mesh,disp , halo_size=0, sharding=None):
|
||||
|
||||
halo_size, halo_extents = get_halo_size(halo_size, sharding=sharding)
|
||||
grid_mesh = slice_pad(grid_mesh, halo_size, sharding=sharding)
|
||||
grid_mesh = halo_exchange(grid_mesh,
|
||||
|
@ -238,7 +239,7 @@ def cic_read_dx(grid_mesh, halo_size=0, sharding=None):
|
|||
displacements = autoshmap(partial(cic_read_dx_impl, halo_size=halo_size),
|
||||
gpu_mesh=gpu_mesh,
|
||||
in_specs=(spec),
|
||||
out_specs=spec)(grid_mesh)
|
||||
out_specs=spec)(grid_mesh , disp)
|
||||
|
||||
return displacements
|
||||
|
||||
|
|
|
@ -25,72 +25,71 @@ def _chunk_split(ptcl_num, chunk_size, *arrays):
|
|||
return remainder, chunks
|
||||
|
||||
|
||||
def enmesh(i1, d1, a1, s1, b12, a2, s2):
|
||||
def enmesh(base_indices, displacements, cell_size, base_shape, offset, new_cell_size, new_shape):
|
||||
"""Multilinear enmeshing."""
|
||||
i1 = jnp.asarray(i1)
|
||||
d1 = jnp.asarray(d1)
|
||||
base_indices = jnp.asarray(base_indices)
|
||||
displacements = jnp.asarray(displacements)
|
||||
with jax.experimental.enable_x64():
|
||||
a1 = jnp.float64(a1) if a2 is not None else jnp.array(a1,
|
||||
dtype=d1.dtype)
|
||||
if s1 is not None:
|
||||
s1 = jnp.array(s1, dtype=i1.dtype)
|
||||
b12 = jnp.float64(b12)
|
||||
if a2 is not None:
|
||||
a2 = jnp.float64(a2)
|
||||
if s2 is not None:
|
||||
s2 = jnp.array(s2, dtype=i1.dtype)
|
||||
cell_size = jnp.float64(cell_size) if new_cell_size is not None else jnp.array(cell_size, dtype=displacements.dtype)
|
||||
if base_shape is not None:
|
||||
base_shape = jnp.array(base_shape, dtype=base_indices.dtype)
|
||||
offset = jnp.float64(offset)
|
||||
if new_cell_size is not None:
|
||||
new_cell_size = jnp.float64(new_cell_size)
|
||||
if new_shape is not None:
|
||||
new_shape = jnp.array(new_shape, dtype=base_indices.dtype)
|
||||
|
||||
dim = i1.shape[1]
|
||||
neighbors = (jnp.arange(2**dim, dtype=i1.dtype)[:, jnp.newaxis] >>
|
||||
jnp.arange(dim, dtype=i1.dtype)) & 1
|
||||
spatial_dim = base_indices.shape[1]
|
||||
neighbor_offsets = (jnp.arange(2**spatial_dim, dtype=base_indices.dtype)[:, jnp.newaxis] >>
|
||||
jnp.arange(spatial_dim, dtype=base_indices.dtype)) & 1
|
||||
|
||||
if a2 is not None:
|
||||
P = i1 * a1 + d1 - b12
|
||||
P = P[:, jnp.newaxis] # insert neighbor axis
|
||||
i2 = P + neighbors * a2 # multilinear
|
||||
if new_cell_size is not None:
|
||||
particle_positions = base_indices * cell_size + displacements - offset
|
||||
particle_positions = particle_positions[:, jnp.newaxis] # insert neighbor axis
|
||||
new_indices = particle_positions + neighbor_offsets * new_cell_size # multilinear
|
||||
|
||||
if s1 is not None:
|
||||
L = s1 * a1
|
||||
i2 %= L
|
||||
if base_shape is not None:
|
||||
grid_length = base_shape * cell_size
|
||||
new_indices %= grid_length
|
||||
|
||||
i2 //= a2
|
||||
d2 = P - i2 * a2
|
||||
new_indices //= new_cell_size
|
||||
new_displacements = particle_positions - new_indices * new_cell_size
|
||||
|
||||
if s1 is not None:
|
||||
d2 -= jnp.rint(d2 / L) * L # also abs(d2) < a2 is expected
|
||||
if base_shape is not None:
|
||||
new_displacements -= jnp.rint(new_displacements / grid_length) * grid_length # also abs(new_displacements) < new_cell_size is expected
|
||||
|
||||
i2 = i2.astype(i1.dtype)
|
||||
d2 = d2.astype(d1.dtype)
|
||||
a2 = a2.astype(d1.dtype)
|
||||
new_indices = new_indices.astype(base_indices.dtype)
|
||||
new_displacements = new_displacements.astype(displacements.dtype)
|
||||
new_cell_size = new_cell_size.astype(displacements.dtype)
|
||||
|
||||
d2 /= a2
|
||||
new_displacements /= new_cell_size
|
||||
else:
|
||||
i12, d12 = jnp.divmod(b12, a1)
|
||||
i1 -= i12.astype(i1.dtype)
|
||||
d1 -= d12.astype(d1.dtype)
|
||||
offset_indices, offset_displacements = jnp.divmod(offset, cell_size)
|
||||
base_indices -= offset_indices.astype(base_indices.dtype)
|
||||
displacements -= offset_displacements.astype(displacements.dtype)
|
||||
|
||||
# insert neighbor axis
|
||||
i1 = i1[:, jnp.newaxis]
|
||||
d1 = d1[:, jnp.newaxis]
|
||||
base_indices = base_indices[:, jnp.newaxis]
|
||||
displacements = displacements[:, jnp.newaxis]
|
||||
|
||||
# multilinear
|
||||
d1 /= a1
|
||||
i2 = jnp.floor(d1).astype(i1.dtype)
|
||||
i2 += neighbors
|
||||
d2 = d1 - i2
|
||||
i2 += i1
|
||||
displacements /= cell_size
|
||||
new_indices = jnp.floor(displacements).astype(base_indices.dtype)
|
||||
new_indices += neighbor_offsets
|
||||
new_displacements = displacements - new_indices
|
||||
new_indices += base_indices
|
||||
|
||||
if s1 is not None:
|
||||
i2 %= s1
|
||||
if base_shape is not None:
|
||||
new_indices %= base_shape
|
||||
|
||||
f2 = 1 - jnp.abs(d2)
|
||||
weights = 1 - jnp.abs(new_displacements)
|
||||
|
||||
if s1 is None and s2 is not None: # all i2 >= 0 if s1 is not None
|
||||
i2 = jnp.where(i2 < 0, s2, i2)
|
||||
if base_shape is None and new_shape is not None: # all new_indices >= 0 if base_shape is not None
|
||||
new_indices = jnp.where(new_indices < 0, new_shape, new_indices)
|
||||
|
||||
f2 = f2.prod(axis=-1)
|
||||
weights = weights.prod(axis=-1)
|
||||
|
||||
return i2, f2
|
||||
return new_indices, weights
|
||||
|
||||
|
||||
def _scatter_chunk(carry, chunk):
|
||||
|
@ -138,7 +137,7 @@ def _chunk_cat(remainder_array, chunked_array):
|
|||
return array
|
||||
|
||||
|
||||
def gather(pmid, disp, mesh, chunk_size=2**24, val=1, offset=0, cell_size=1.):
|
||||
def gather(pmid, disp, mesh, chunk_size=2**24, val=0, offset=0, cell_size=1.):
|
||||
ptcl_num, spatial_ndim = pmid.shape
|
||||
|
||||
mesh = jnp.asarray(mesh)
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import jax.numpy as jnp
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
|
51
jaxpm/pm.py
51
jaxpm/pm.py
|
@ -1,11 +1,9 @@
|
|||
from functools import partial
|
||||
|
||||
import jax.numpy as jnp
|
||||
import jax_cosmo as jc
|
||||
from jax.sharding import PartitionSpec as P
|
||||
|
||||
from jaxpm.distributed import (autoshmap, fft3d, get_local_shape, ifft3d,
|
||||
normal_field, zeros)
|
||||
from jaxpm.distributed import (fft3d, ifft3d,
|
||||
normal_field)
|
||||
from jaxpm.growth import (dGf2a, dGfa, growth_factor, growth_factor_second,
|
||||
growth_rate, growth_rate_second)
|
||||
from jaxpm.kernels import (PGD_kernel, fftk, gradient_kernel,
|
||||
|
@ -29,17 +27,17 @@ def pm_forces(positions,
|
|||
mesh_shape = delta.shape
|
||||
|
||||
if paint_absolute_pos:
|
||||
paint_fn = lambda x: cic_paint(zeros(mesh_shape, sharding),
|
||||
x,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
read_fn = lambda x: cic_read(
|
||||
x, positions, halo_size=halo_size, sharding=sharding)
|
||||
paint_fn = lambda pos: cic_paint(jnp.zeros(shape=mesh_shape , device=sharding),
|
||||
pos,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
read_fn = lambda grid_mesh, pos: cic_read(
|
||||
grid_mesh, pos, halo_size=halo_size, sharding=sharding)
|
||||
else:
|
||||
paint_fn = partial(cic_paint_dx,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding)
|
||||
read_fn = partial(cic_read_dx, halo_size=halo_size, sharding=sharding)
|
||||
paint_fn = lambda disp: cic_paint_dx(
|
||||
disp, halo_size=halo_size, sharding=sharding)
|
||||
read_fn = lambda grid_mesh, disp: cic_read_dx(
|
||||
grid_mesh, disp, halo_size=halo_size, sharding=sharding)
|
||||
|
||||
if delta is None:
|
||||
field = paint_fn(positions)
|
||||
|
@ -55,7 +53,7 @@ def pm_forces(positions,
|
|||
kvec, r_split=r_split)
|
||||
# Computes gravitational forces
|
||||
forces = jnp.stack([
|
||||
read_fn(ifft3d(-gradient_kernel(kvec, i) * pot_k),
|
||||
read_fn(ifft3d(-gradient_kernel(kvec, i) * pot_k),positions
|
||||
) for i in range(3)], axis=-1) # yapf: disable
|
||||
|
||||
return forces
|
||||
|
@ -73,6 +71,8 @@ def lpt(cosmo,
|
|||
e.g. Eq. 2 and 3 [Jenkins2010](https://arxiv.org/pdf/0910.0258)
|
||||
"""
|
||||
paint_absolute_pos = particles is not None
|
||||
if particles is None:
|
||||
particles = jnp.zeros_like(initial_conditions , shape=(*initial_conditions.shape , 3))
|
||||
|
||||
a = jnp.atleast_1d(a)
|
||||
E = jnp.sqrt(jc.background.Esqr(cosmo, a))
|
||||
|
@ -167,25 +167,27 @@ def make_ode_fn(mesh_shape,
|
|||
# Computes the update of velocity (kick)
|
||||
dvel = 1. / (a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * forces
|
||||
|
||||
#dpos = dpos if not paint_absolute_pos else dpos + pos
|
||||
|
||||
return dpos, dvel
|
||||
|
||||
return nbody_ode
|
||||
|
||||
|
||||
def get_ode_fn(cosmo, mesh_shape, halo_size=0, sharding=None):
|
||||
def make_diffrax_ode(cosmo, mesh_shape,
|
||||
paint_absolute_pos=True,
|
||||
halo_size=0,
|
||||
sharding=None):
|
||||
|
||||
def nbody_ode(a, state, args):
|
||||
"""
|
||||
State is an array [position, velocities]
|
||||
|
||||
Compatible with [Diffrax API](https://docs.kidger.site/diffrax/)
|
||||
state is a tuple (position, velocities)
|
||||
"""
|
||||
pos, vel = state
|
||||
forces = pm_forces(
|
||||
pos, mesh_shape, halo_size=halo_size,
|
||||
sharding=sharding) * 1.5 * cosmo.Omega_m
|
||||
|
||||
forces = pm_forces(pos,
|
||||
mesh_shape=mesh_shape,
|
||||
paint_absolute_pos=paint_absolute_pos,
|
||||
halo_size=halo_size,
|
||||
sharding=sharding) * 1.5 * cosmo.Omega_m
|
||||
|
||||
# Computes the update of position (drift)
|
||||
dpos = 1. / (a**3 * jnp.sqrt(jc.background.Esqr(cosmo, a))) * vel
|
||||
|
@ -197,7 +199,6 @@ def get_ode_fn(cosmo, mesh_shape, halo_size=0, sharding=None):
|
|||
|
||||
return nbody_ode
|
||||
|
||||
|
||||
def pgd_correction(pos, mesh_shape, params):
|
||||
"""
|
||||
improve the short-range interactions of PM-Nbody simulations with potential gradient descent method,
|
||||
|
|
|
@ -5,7 +5,6 @@ import numpy as np
|
|||
from jax.scipy.stats import norm
|
||||
from scipy.special import legendre
|
||||
|
||||
from jaxpm.growth import growth_factor, growth_rate
|
||||
|
||||
__all__ = [
|
||||
'power_spectrum', 'transfer', 'coherence', 'pktranscoh',
|
||||
|
|
Loading…
Add table
Reference in a new issue