Adding begnning of implem

This commit is contained in:
EiffL 2022-10-22 11:30:25 -05:00
parent 3c1abbafcd
commit 1948eae9ed
3 changed files with 68 additions and 87 deletions

View file

@ -1,88 +1,46 @@
import numpy as np import numpy as np
import jax.numpy as jnp import jax.numpy as jnp
def fftk(shape, symmetric=True, finite=False, dtype=np.float32): def fftk(shape, symmetric=True, dtype=np.float32, comms=None):
""" Return k_vector given a shape (nc, nc, nc) and box_size """ Return k_vector given a shape (nc, nc, nc)
""" """
k = [] k = []
if comms is not None:
nx = comms[0].Get_size()
ix = comms[0].Get_rank()
ny = comms[1].Get_size()
iy = comms[1].Get_rank()
shape = [shape[0]*nx, shape[1]*ny] + list(shape[2:])
for d in range(len(shape)): for d in range(len(shape)):
kd = np.fft.fftfreq(shape[d]) kd = np.fft.fftfreq(shape[d])
kd *= 2 * np.pi kd *= 2 * np.pi
kdshape = np.ones(len(shape), dtype='int')
if symmetric and d == len(shape) - 1: if symmetric and d == len(shape) - 1:
kd = kd[:shape[d] // 2 + 1] kd = kd[:shape[d] // 2 + 1]
kdshape[d] = len(kd)
kd = kd.reshape(kdshape) if (comms is not None) and d==0:
kd = kd.reshape([nx, -1])[ix]
if (comms is not None) and d==1:
kd = kd.reshape([ny, -1])[iy]
k.append(kd.astype(dtype)) k.append(kd.astype(dtype))
del kd, kdshape
return k return k
def gradient_kernel(kvec, direction, order=1): @partial(jax.pmap,
""" in_axes=[['x','y','z'],
Computes the gradient kernel in the requested direction ['x'],['y'],['z']],
Parameters: out_axes=['x','y','z',...])
----------- def apply_gradient_laplace(kfield, kvec):
kvec: array kx, ky, kz = kvec
Array of k values in Fourier space kk = (kx**2 + ky**2 + kz**2)
direction: int kernel = jnp.where(kk == 0, 1., 1./kk)
Index of the direction in which to take the gradient return jnp.stack([kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(ky) - jnp.sin(2 * ky)),
Returns: kfield * kernel * 1j * 1 / 6.0 *
-------- (8 * jnp.sin(kz) - jnp.sin(2 * kz)),
wts: array kfield * kernel * 1j * 1 / 6.0 * (8 * jnp.sin(kx) - jnp.sin(2 * kx))],axis=-1)
Complex kernel
"""
if order == 0:
wts = 1j * kvec[direction]
wts = jnp.squeeze(wts)
wts[len(wts) // 2] = 0
wts = wts.reshape(kvec[direction].shape)
return wts
else:
w = kvec[direction]
a = 1 / 6.0 * (8 * jnp.sin(w) - jnp.sin(2 * w))
wts = a * 1j
return wts
def laplace_kernel(kvec):
"""
Compute the Laplace kernel from a given K vector
Parameters:
-----------
kvec: array
Array of k values in Fourier space
Returns:
--------
wts: array
Complex kernel
"""
kk = sum(ki**2 for ki in kvec)
mask = (kk == 0).nonzero()
kk[mask] = 1
wts = 1. / kk
imask = (~(kk == 0)).astype(int)
wts *= imask
return wts
def longrange_kernel(kvec, r_split):
"""
Computes a long range kernel
Parameters:
-----------
kvec: array
Array of k values in Fourier space
r_split: float
TODO: @modichirag add documentation
Returns:
--------
wts: array
kernel
"""
if r_split != 0:
kk = sum(ki**2 for ki in kvec)
return np.exp(-kk * r_split**2)
else:
return 1.
def cic_compensation(kvec): def cic_compensation(kvec):
""" """

View file

@ -100,12 +100,24 @@ def halo_reduce(arr, halo_size, token=None, comms=None):
rank_y = comms[1].Get_rank() rank_y = comms[1].Get_rank()
margin = arr[:, -2*halo_size:] margin = arr[:, -2*halo_size:]
margin, token = mpi4jax.sendrecv(margin, margin, rank_y-1, rank_y+1, margin, token = mpi4jax.sendrecv(margin, margin, rank_y-1, rank_y+1,
comm=comms[0], token=token) comm=comms[1], token=token)
arr = arr.at[:, :2*halo_size].add(margin) arr = arr.at[:, :2*halo_size].add(margin)
margin = arr[:, :2*halo_size] margin = arr[:, :2*halo_size]
margin, token = mpi4jax.sendrecv(margin, margin, rank_y+1, rank_y-1, margin, token = mpi4jax.sendrecv(margin, margin, rank_y+1, rank_y-1,
comm=comms[0], token=token) comm=comms[1], token=token)
arr = arr.at[:, -2*halo_size:].add(margin) arr = arr.at[:, -2*halo_size:].add(margin)
return arr, token return arr, token
def zeros(shape, comms=None):
""" Initialize an array of given global shape
partitionned if need be accross dimensions.
"""
if comms is None:
return jnp.zeros(shape)
nx = comms[0].Get_size()
ny = comms[1].Get_size()
return jnp.zeros([shape[0]//nx, shape[1]//ny]+list(shape[2:]))

View file

@ -3,40 +3,51 @@ import jax.numpy as jnp
import jax_cosmo as jc import jax_cosmo as jc
from jaxpm.kernels import fftk, gradient_kernel, laplace_kernel, longrange_kernel, PGD_kernel from jaxpm.ops import fft3d, ifft3d, zeros
from jaxpm.kernels import fftk, apply_gradient_laplace
from jaxpm.painting import cic_paint, cic_read from jaxpm.painting import cic_paint, cic_read
from jaxpm.growth import growth_factor, growth_rate, dGfa from jaxpm.growth import growth_factor, growth_rate, dGfa
def pm_forces(positions, mesh_shape=None, delta=None, r_split=0): def pm_forces(positions, mesh_shape=None, delta_k=None, halo_size=0, token=None, comms=None):
""" """
Computes gravitational forces on particles using a PM scheme Computes gravitational forces on particles using a PM scheme
""" """
if mesh_shape is None: if mesh_shape is None:
mesh_shape = delta.shape mesh_shape = delta_k.shape
kvec = fftk(mesh_shape)
if delta is None: kvec = fftk(mesh_shape, comms=comms)
delta_k = jnp.fft.rfftn(cic_paint(jnp.zeros(mesh_shape), positions))
else: if delta_k is None:
delta_k = jnp.fft.rfftn(delta) delta, token = cic_paint(zeros(mesh_shape,comms=comms),
positions,
halo_size=halo_size, token=token, comms=comms)
delta_k, token = fft3d(delta, token=token, comms=comms)
# Computes gravitational potential # Computes gravitational potential
pot_k = delta_k * laplace_kernel(kvec) * longrange_kernel(kvec, r_split=r_split) forces_k = apply_gradient_laplace(kfield, kvec)
# Computes gravitational forces # Computes gravitational forces
return jnp.stack([cic_read(jnp.fft.irfftn(gradient_kernel(kvec, i)*pot_k), positions) fx, token = ifft3d(forces_k[...,0], token=token, comms=comms)
for i in range(3)],axis=-1) fx, token = cic_read(fx, positions, halo_size=halo_size, comms=comms)
fy, token = ifft3d(forces_k[...,1], token=token, comms=comms)
fy, token = cic_read(fy, positions, halo_size=halo_size, comms=comms)
def lpt(cosmo, initial_conditions, positions, a): fz, token = ifft3d(forces_k[...,2], token=token, comms=comms)
fz, token = cic_read(fz, positions, halo_size=halo_size, comms=comms)
return jnp.stack([fx,fy,fz],axis=-1), token
def lpt(cosmo, initial_conditions, positions, a, token=token, comms=comms):
""" """
Computes first order LPT displacement Computes first order LPT displacement
""" """
initial_force = pm_forces(positions, delta=initial_conditions) initial_force = pm_forces(positions, delta=initial_conditions, token=token, comms=comms)
a = jnp.atleast_1d(a) a = jnp.atleast_1d(a)
dx = growth_factor(cosmo, a) * initial_force dx = growth_factor(cosmo, a) * initial_force
p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx p = a**2 * growth_rate(cosmo, a) * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dx
f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force f = a**2 * jnp.sqrt(jc.background.Esqr(cosmo, a)) * dGfa(cosmo, a) * initial_force
return dx, p, f return dx, p, f, comms
def linear_field(mesh_shape, box_size, pk, seed): def linear_field(mesh_shape, box_size, pk, seed):
""" """