borg_velocity/tests/test_likelihood.py
2024-10-25 11:40:58 +02:00

217 lines
No EOL
7.1 KiB
Python

import aquila_borg as borg
import configparser
import numpy as np
import matplotlib.pyplot as plt
import borg_velocity.likelihood as likelihood
import borg_velocity.forwards as forwards
import borg_velocity.utils as utils
ini_file = '../conf/supranta_ini.ini'
test_scaling = True
test_sigma8 = True
test_omegam = True
test_alpha = True
test_lam = True
test_muA = True
test_bulk = True
# Input box
box_in = borg.forward.BoxModel()
config = configparser.ConfigParser()
config.read(ini_file)
box_in.L = (float(config['system']['L0']), float(config['system']['L1']), float(config['system']['L2']))
box_in.N = (int(config['system']['N0']), int(config['system']['N1']), int(config['system']['N2']))
box_in.xmin = (float(config['system']['corner0']), float(config['system']['corner1']), float(config['system']['corner2']))
# Setup BORG forward model and likelihood
model = likelihood.build_gravity_model(None, box_in, ini_file=ini_file)
cosmo = utils.get_cosmopar(ini_file)
model.setCosmoParams(cosmo)
fwd_param = forwards.NullForward(box_in)
fwd_vel = likelihood.fwd_vel
mylike = likelihood.VelocityBORGLikelihood(model, fwd_param, fwd_vel, ini_file)
# Create mock data
state = borg.likelihood.MarkovState()
mylike.initializeLikelihood(state)
mylike.updateCosmology(cosmo)
np.random.seed(2)
s_hat = np.fft.rfftn(np.random.randn(*box_in.N)) / box_in.Ntot ** (0.5)
mylike.generateMockData(s_hat, state)
if test_scaling:
all_scale = np.linspace(0.5, 1.5, 100)
all_lkl = np.empty(all_scale.shape)
for i, scale in enumerate(all_scale):
all_lkl[i] = mylike.logLikelihoodComplex(scale * s_hat, None)
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
all_lkl -= fid_lkl
all_lkl = np.exp(-all_lkl)
fig, ax = plt.subplots(1, 1, figsize=(5,5))
ax.plot(all_scale, all_lkl)
ax.axhline(y=0, color='k')
ax.axvline(x=1, color='k')
ax.set_xlabel(r'$\hat{s}$ scaling')
ax.set_ylabel(r'$\mathcal{L}$')
ax.set_xlim(all_scale.min(), all_scale.max())
fig.tight_layout()
fig.savefig('../figs/scaling_test.png')
fig.clf()
plt.close(fig)
# Test sigma8
if test_sigma8:
all_sigma8 = np.linspace(0.5, 1.2, 100)
all_lkl = np.empty(all_sigma8.shape)
cosmo_true = mylike.fwd.getCosmoParams()
cosmo = mylike.fwd.getCosmoParams()
for i, sigma8 in enumerate(all_sigma8):
cosmo.sigma8 = sigma8
mylike.updateCosmology(cosmo)
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
mylike.updateCosmology(cosmo_true)
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
all_lkl -= fid_lkl
all_lkl = np.exp(-all_lkl)
fig, ax = plt.subplots(1, 1, figsize=(5,5))
ax.plot(all_sigma8, all_lkl)
ax.axhline(y=0, color='k')
ax.axvline(x=cosmo_true.sigma8, color='k')
ax.set_xlabel(r'$\sigma_8$')
ax.set_ylabel(r'$\mathcal{L}$')
fig.tight_layout()
fig.savefig('../figs/sigma8_test.png')
fig.clf()
plt.close(fig)
# Test omegam
if test_omegam:
all_omegam = np.linspace(0.1, 0.6, 100)
all_lkl = np.empty(all_omegam.shape)
cosmo_true = mylike.fwd.getCosmoParams()
cosmo = mylike.fwd.getCosmoParams()
for i, omegam in enumerate(all_omegam):
cosmo.omega_m = omegam
mylike.updateCosmology(cosmo)
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
mylike.updateCosmology(cosmo_true)
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
all_lkl -= fid_lkl
all_lkl = np.exp(-all_lkl)
fig, ax = plt.subplots(1, 1, figsize=(5,5))
ax.plot(all_omegam, all_lkl)
ax.axhline(y=0, color='k')
ax.axvline(x=cosmo_true.omega_m, color='k')
ax.set_xlabel(r'$\Omega_{\rm m}$')
ax.set_ylabel(r'$\mathcal{L}$')
fig.tight_layout()
fig.savefig('../figs/omegam_test.png')
fig.clf()
plt.close(fig)
# Test bias model
if test_alpha:
all_alpha = np.linspace(-2.0, 5.0, 100)
all_lkl = np.empty(all_alpha.shape)
for i, alpha in enumerate(all_alpha):
mylike.fwd_param.setModelParams({'alpha0':alpha})
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
mylike.fwd_param.setModelParams({'alpha0':mylike.alpha[0]})
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
all_lkl -= fid_lkl
all_lkl = np.exp(-all_lkl)
fig, ax = plt.subplots(1, 1, figsize=(5,5))
ax.plot(all_alpha, all_lkl)
ax.axhline(y=0, color='k')
ax.axvline(x=mylike.alpha[0], color='k')
ax.set_xlabel(r'$\alpha_0$')
ax.set_ylabel(r'$\mathcal{L}$')
fig.tight_layout()
fig.savefig('../figs/alpha_test.png')
fig.clf()
plt.close(fig)
# Test radial sampling
if test_lam:
all_lam = np.linspace(0.0, 10.0, 100)
all_lkl = np.empty(all_lam.shape)
for i, lam in enumerate(all_lam):
mylike.fwd_param.setModelParams({'lam0':lam})
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
mylike.fwd_param.setModelParams({'lam0':mylike.lam[0]})
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
all_lkl -= fid_lkl
all_lkl = np.exp(-all_lkl)
fig, ax = plt.subplots(1, 1, figsize=(5,5))
ax.plot(all_lam, all_lkl)
ax.axhline(y=0, color='k')
ax.axvline(x=mylike.lam[0], color='k')
ax.set_xlabel(r'$\lambda_0$')
ax.set_ylabel(r'$\mathcal{L}$')
fig.tight_layout()
fig.savefig('../figs/lam_test.png')
fig.clf()
plt.close(fig)
# Test bias model
if test_muA:
all_muA = np.linspace(0.95, 1.05, 100)
all_lkl = np.empty(all_muA.shape)
for i, muA in enumerate(all_muA):
mylike.fwd_param.setModelParams({'mua0':muA})
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
mylike.fwd_param.setModelParams({'mua0':mylike.muA[0]})
fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
all_lkl -= fid_lkl
all_lkl = np.exp(-all_lkl)
fig, ax = plt.subplots(1, 1, figsize=(5,5))
ax.plot(all_muA, all_lkl)
ax.axhline(y=0, color='k')
ax.axvline(x=mylike.muA[0], color='k')
ax.set_xlabel(r'$\mu_0$')
ax.set_ylabel(r'$\mathcal{L}$')
fig.tight_layout()
fig.savefig('../figs/muA_test.png')
fig.clf()
plt.close(fig)
# Test bulk flow
if test_bulk:
all_vx = np.linspace(-100, 100, 50)
all_lkl = np.empty(all_vx.shape)
for i, vx in enumerate(all_vx):
mylike.fwd_param.setModelParams({'bulk_flow_x':vx})
all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None)
mylike.fwd_param.setModelParams({'bulk_flow_x':mylike.bulk_flow[0]})
# fid_lkl = mylike.logLikelihoodComplex(s_hat, None)
fid_lkl = np.amin(all_lkl)
all_lkl -= fid_lkl
all_lkl = np.exp(-all_lkl)
sigma_bulk = utils.get_sigma_bulk(mylike.L[0], mylike.fwd.getCosmoParams())
ref_lkl = np.exp(-all_vx ** 2 / 2 / sigma_bulk ** 2)
ref_lkl *= np.amax(all_lkl) / np.amax(ref_lkl)
fig, ax = plt.subplots(1, 1, figsize=(5,5))
ax.plot(all_vx, all_lkl, label='Posterior')
ax.plot(all_vx, ref_lkl, ls='--', label=r'$\Lambda$CDM prior')
ax.axhline(y=0, color='k')
ax.axvline(x=mylike.muA[0], color='k')
ax.legend()
ax.set_xlabel(r'$v_{{\rm bulk}, x}$')
ax.set_ylabel(r'$\mathcal{L}$')
fig.tight_layout()
fig.savefig('../figs/bulk_test.png')
fig.clf()
plt.close(fig)