855 lines
No EOL
37 KiB
Python
855 lines
No EOL
37 KiB
Python
import aquila_borg as borg
|
||
import pandas as pd
|
||
import linecache
|
||
import numpy as np
|
||
from astropy.coordinates import SkyCoord
|
||
import astropy.units as apu
|
||
import jax.numpy as jnp
|
||
import jax
|
||
|
||
import corner
|
||
import matplotlib.pyplot as plt
|
||
|
||
import borg_velocity.poisson_process as poisson_process
|
||
import borg_velocity.projection as projection
|
||
import borg_velocity.utils as utils
|
||
|
||
import numpyro
|
||
import numpyro.distributions as dist
|
||
from jax import lax, random
|
||
|
||
from tfr_inference import get_fields, generateMBData
|
||
|
||
# Output stream management
|
||
cons = borg.console()
|
||
myprint = lambda x: cons.print_std(x) if type(x) == str else cons.print_std(repr(x))
|
||
|
||
|
||
def create_mock(Nt, L, xmin, cpar, dens, vel, Rmax, alpha,
|
||
a_tripp, b_tripp, M_SN, sigma_SN, sigma_m, sigma_stretch, sigma_c,
|
||
hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma,
|
||
sigma_v, interp_order=1, bias_epsilon=1e-7):
|
||
"""
|
||
Create mock TFR catalogue from a density and velocity field
|
||
|
||
Args:
|
||
- Nt (int): Number of tracers to produce
|
||
- L (float): Box length (Mpc/h)
|
||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||
- cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters to use
|
||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||
- Rmax (float): Maximum allowed comoving radius of a tracer (Mpc/h)
|
||
- alpha (float): Exponent for bias model
|
||
- a_tripp (float): Coefficient of stretch in the Tripp relation
|
||
- b_tripp (float): Coefficient of colour in the Tripp relation
|
||
- M_SN (float): Absolute magnitude of supernovae
|
||
- sigma_SN (float): Intrinsic scatter in the Tripp relation
|
||
- sigma_m (float): Uncertainty on the apparent magnitude measurements
|
||
- sigma_stretch (float): Uncertainty on the stretch measurements
|
||
- sigma_c (float): Uncertainty on the colour measurements
|
||
- hyper_stretch_mu (float): Mean of Gaussian hyper prior for the true stretch values
|
||
- hyper_stretch_sigma (float): Std of Gaussian hyper prior for the true stretch values
|
||
- hyper_c_mu (float): Mean of hyper Gaussian prior for the true colour values
|
||
- hyper_c_sigma (float): Std of Gaussian hyper prior for the true colour values
|
||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||
- interp_order (int, default=1): Order of interpolation from grid points to the line of sight
|
||
- bias_epsilon (float, default=1e-7): Small number to add to 1 + delta to prevent 0^#
|
||
|
||
Returns:
|
||
- all_RA (np.ndarrary): Right Ascension (degrees) of the tracers (shape = (Nt,))
|
||
- all_Dec (np.ndarrary): Dec (np.ndarray): Delination (degrees) of the tracers (shape = (Nt,))
|
||
- czCMB (np.ndarrary): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||
- all_mtrue (np.ndarrary): True apparent magnitudes of the tracers (shape = (Nt,))
|
||
|
||
- all_mobs (np.ndarrary): Observed apparent magnitudes of the tracers (shape = (Nt,))
|
||
|
||
- all_xtrue (np.ndarrary): True comoving coordinates of the tracers (Mpc/h) (shape = (3, Nt))
|
||
- vbulk (np.ndarray): The bulk velocity of the box (km/s)
|
||
|
||
"""
|
||
|
||
# Initialize lists to store valid positions and corresponding sig_mu values
|
||
all_xtrue = np.empty((3, Nt))
|
||
all_mtrue = np.empty(Nt)
|
||
all_stretchtrue = np.empty(Nt)
|
||
all_ctrue = np.empty(Nt)
|
||
all_mobs = np.empty(Nt)
|
||
all_stretchobs = np.empty(Nt)
|
||
all_cobs = np.empty(Nt)
|
||
all_RA = np.empty(Nt)
|
||
all_Dec = np.empty(Nt)
|
||
|
||
# Counter for accepted positions
|
||
accepted_count = 0
|
||
|
||
# Bias model
|
||
phi = (1. + dens + bias_epsilon) ** alpha
|
||
|
||
# Only use centre of box
|
||
x = np.linspace(xmin, xmin + L, dens.shape[0]+1)
|
||
i0 = np.argmin(np.abs(x + Rmax))
|
||
i1 = np.argmin(np.abs(x - Rmax))
|
||
L_small = x[i1] - x[i0]
|
||
xmin_small = x[i0]
|
||
phi_small = phi[i0:i1, i0:i1, i0:i1]
|
||
|
||
# Loop until we have Nt valid positions
|
||
while accepted_count < Nt:
|
||
|
||
# Generate positions (comoving)
|
||
xtrue = poisson_process.sample_3d(phi_small, Nt, L_small, (xmin_small, xmin_small, xmin_small))
|
||
|
||
# Convert to RA, Dec, Distance (comoving)
|
||
rtrue = np.sqrt(np.sum(xtrue** 2, axis=0)) # Mpc/h
|
||
c = SkyCoord(x=xtrue[0], y=xtrue[1], z=xtrue[2], representation_type='cartesian')
|
||
RA = c.spherical.lon.degree
|
||
Dec = c.spherical.lat.degree
|
||
r_hat = np.array(SkyCoord(ra=RA*apu.deg, dec=Dec*apu.deg).cartesian.xyz)
|
||
|
||
# Compute cosmological redshift
|
||
zcosmo = utils.z_cos(rtrue, cpar.omega_m)
|
||
|
||
# Compute luminosity distance
|
||
# DO I NEED TO DO /h???
|
||
dL = (1 + zcosmo) * rtrue / cpar.h # Mpc
|
||
|
||
# Compute true distance modulus
|
||
mutrue = 5 * np.log10(dL) + 25
|
||
|
||
# Sample true stretch and colour (c) from its prior
|
||
stretchtrue = hyper_stretch_mu + hyper_stretch_sigma * np.random.randn(Nt)
|
||
ctrue = hyper_c_mu + hyper_c_sigma * np.random.randn(Nt)
|
||
|
||
# Obtain muSN from mutrue using the intrinsic scatter
|
||
muSN = mutrue + sigma_SN * np.random.randn(Nt)
|
||
|
||
# Obtain apparent magnitude from the TFR
|
||
mtrue = muSN - (a_tripp * stretchtrue - b_tripp * ctrue) + M_SN
|
||
|
||
# Scatter true observed apparent magnitudes and linewidths
|
||
mobs = mtrue + sigma_m * np.random.randn(Nt)
|
||
stretchobs = stretchtrue + sigma_stretch * np.random.randn(Nt)
|
||
cobs = ctrue + sigma_c * np.random.randn(Nt)
|
||
|
||
# Apply apparement magnitude cut
|
||
m = np.ones(mobs.shape, dtype=bool)
|
||
mtrue = mtrue[m]
|
||
stretchtrue = stretchtrue[m]
|
||
ctrue = ctrue[m]
|
||
mobs = mobs[m]
|
||
stretchobs = stretchobs[m]
|
||
cobs = cobs[m]
|
||
xtrue = xtrue[:,m]
|
||
RA = RA[m]
|
||
Dec = Dec[m]
|
||
|
||
# Calculate how many valid positions we need to reach Nt
|
||
remaining_needed = Nt - accepted_count
|
||
selected_count = min(xtrue.shape[1], remaining_needed)
|
||
|
||
# Append only the needed number of valid positions
|
||
imin = accepted_count
|
||
imax = accepted_count + selected_count
|
||
all_xtrue[:,imin:imax] = xtrue[:,:selected_count]
|
||
all_mtrue[imin:imax] = mtrue[:selected_count]
|
||
all_stretchtrue[imin:imax] = stretchtrue[:selected_count]
|
||
all_ctrue[imin:imax] = ctrue[:selected_count]
|
||
all_mobs[imin:imax] = mobs[:selected_count]
|
||
all_stretchobs[imin:imax] = stretchobs[:selected_count]
|
||
all_cobs[imin:imax] = cobs[:selected_count]
|
||
all_RA[imin:imax] = RA[:selected_count]
|
||
all_Dec[imin:imax] = Dec[:selected_count]
|
||
|
||
# Update the accepted count
|
||
accepted_count += selected_count
|
||
|
||
myprint(f'\tMade {accepted_count} of {Nt}')
|
||
|
||
# Obtain a bulk velocity
|
||
vhat = np.random.randn(3)
|
||
vhat = vhat / np.linalg.norm(vhat)
|
||
vbulk = np.random.randn() * utils.get_sigma_bulk(L, cpar)
|
||
vbulk = vhat * vbulk
|
||
|
||
# Get the radial component of the peculiar velocity at the positions of the objects
|
||
myprint('Obtaining peculiar velocities')
|
||
tracer_vel = projection.interp_field(
|
||
vel,
|
||
np.expand_dims(all_xtrue, axis=2),
|
||
L,
|
||
np.array([xmin, xmin, xmin]),
|
||
interp_order
|
||
) # km/s
|
||
myprint('Adding bulk velocity')
|
||
tracer_vel = tracer_vel + vbulk[:,None,None]
|
||
myprint('Radial projection')
|
||
vr_true = np.squeeze(projection.project_radial(
|
||
tracer_vel,
|
||
np.expand_dims(all_xtrue, axis=2),
|
||
np.zeros(3,)
|
||
)) # km/s
|
||
|
||
# Recompute cosmological redshift
|
||
rtrue = jnp.sqrt(jnp.sum(all_xtrue ** 2, axis=0))
|
||
zcosmo = utils.z_cos(rtrue, cpar.omega_m)
|
||
|
||
# Obtain total redshift
|
||
vr_noised = vr_true + sigma_v * np.random.randn(Nt)
|
||
czCMB = ((1 + zcosmo) * (1 + vr_noised / utils.speed_of_light) - 1) * utils.speed_of_light
|
||
|
||
return all_RA, all_Dec, czCMB, all_mtrue, all_stretchtrue, all_ctrue, all_mobs, all_stretchobs, all_cobs, all_xtrue, vbulk
|
||
|
||
|
||
def estimate_data_parameters():
|
||
"""
|
||
Using Foundation DR1, estimate some parameters to use in mock generation.
|
||
|
||
Returns:
|
||
- sigma_m (float): Uncertainty on the apparent magnitude measurements
|
||
- sigma_stretch (float): Uncertainty on the stretch measurements
|
||
- sigma_c (float): Uncertainty on the colour measurements
|
||
- hyper_stretch_mu (float): Estimate of the mean of Gaussian hyper prior for the true stretch values
|
||
- hyper_stretch_sigma (float): Estimate of the std of Gaussian hyper prior for the true stretch values
|
||
- hyper_c_mu (float): Estimate of the mean of hyper Gaussian prior for the true colour values
|
||
- hyper_c_sigma (float): Estimate of the std of Gaussian hyper prior for the true colour values
|
||
"""
|
||
|
||
fname = '/data101/bartlett/fsigma8/PV_data/Foundation_DR1/Foundation_DR1.FITRES.TEXT'
|
||
|
||
# Get header
|
||
columns = ['SN'] + linecache.getline(fname, 6).strip().split()[1:]
|
||
df = pd.read_csv(fname, sep="\s+", skipinitialspace=True, skiprows=7, names=columns)
|
||
|
||
zCMB = df['zCMB']
|
||
m = df['mB']
|
||
m_err = df['mBERR']
|
||
|
||
x1 = df['x1']
|
||
hyper_stretch_mu = np.median(x1)
|
||
hyper_stretch_sigma = (np.percentile(x1, 84) - np.percentile(x1, 16)) / 2
|
||
|
||
c = df['c']
|
||
hyper_c_mu = np.median(c)
|
||
hyper_c_sigma = (np.percentile(c, 84) - np.percentile(c, 16)) / 2
|
||
|
||
sigma_m = np.median(df['mBERR'])
|
||
sigma_stretch = np.median(df['x1ERR'])
|
||
sigma_c = np.median(df['cERR'])
|
||
|
||
return sigma_m, sigma_stretch, sigma_c, hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma
|
||
|
||
|
||
|
||
def likelihood_vel(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||
cz_obs, MB_pos):
|
||
"""
|
||
Evaluate the terms in the likelihood from the velocity and malmquist bias
|
||
|
||
Args:
|
||
- alpha (float): Exponent for bias model
|
||
- a_tripp (float): Coefficient of stretch in the Tripp relation
|
||
- b_tripp (float): Coefficient of colour in the Tripp relation
|
||
- M_SN (float): Absolute magnitude of supernovae
|
||
- sigma_SN (float): Intrinsic scatter in the Tripp relation
|
||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||
- m_true (np.ndarray): True apparent magnitudes of the tracers (shape = (Nt,))
|
||
- stretch_true (np.ndarray): True stretch values of the tracers (shape = (Nt,))
|
||
- c_true (np.ndarray): True colour values of the tracers (shape = (Nt,))
|
||
- vbulk (np.ndarray): Bulk velocity of the box (km/s) (shape=(3,))
|
||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||
- omega_m (float): Matter density parameter Om
|
||
- h (float): Hubble constant H0 = 100 h km/s/Mpc
|
||
- L (float): Comoving box size (Mpc/h)
|
||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||
- interp_order (int): Order of interpolation from grid points to the line of sight
|
||
- bias_epsilon (float): Small number to add to 1 + delta to prevent 0^#
|
||
- cz_obs (np.ndarray): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||
- MB_pos (np.ndarray): Comoving coordinates of integration points to use in likelihood (Mpc/h).
|
||
The shape is (3, Nt, Nsig)
|
||
|
||
Returns:
|
||
- loglike (float): The log-likelihood of the data
|
||
"""
|
||
|
||
# Comoving radii of integration points (Mpc/h)
|
||
r = jnp.sqrt(jnp.sum(MB_pos ** 2, axis=0))
|
||
|
||
# p_r = r^2 n(r) N(mutrue; muTFR, sigmaTFR)
|
||
# Multiply by arbitrary number for numerical stability (cancels in p_r / p_r_norm)
|
||
number_density = projection.interp_field(
|
||
dens,
|
||
MB_pos,
|
||
L,
|
||
jnp.array([xmin, xmin, xmin]),
|
||
interp_order,
|
||
use_jitted=True,
|
||
)
|
||
number_density = jax.nn.relu(1. + number_density)
|
||
number_density = jnp.power(number_density + bias_epsilon, alpha)
|
||
zcosmo = utils.z_cos(r, omega_m)
|
||
mutrue = 5 * jnp.log10((1 + zcosmo) * r / h) + 25
|
||
mutripp = m_true + a_tripp * stretch_true - b_tripp * c_true - M_SN
|
||
d2 = ((mutrue - mutripp[:,None]) / sigma_SN) ** 2
|
||
best = jnp.amin(jnp.abs(d2), axis=1)
|
||
d2 = d2 - jnp.expand_dims(jnp.nanmin(d2, axis=1), axis=1)
|
||
p_r = r ** 2 * jnp.exp(-0.5 * d2) * number_density
|
||
p_r_norm = jnp.expand_dims(jnp.trapezoid(p_r, r, axis=1), axis=1)
|
||
|
||
# Peculiar velocity term
|
||
tracer_vel = projection.interp_field(
|
||
vel,
|
||
MB_pos,
|
||
L,
|
||
jnp.array([xmin, xmin, xmin]),
|
||
interp_order,
|
||
use_jitted=True,
|
||
)
|
||
tracer_vel = tracer_vel + jnp.squeeze(vbulk)[...,None,None]
|
||
tracer_vr = projection.project_radial(
|
||
tracer_vel,
|
||
MB_pos,
|
||
jnp.zeros(3,)
|
||
)
|
||
cz_pred = ((1 + zcosmo) * (1 + tracer_vr / utils.speed_of_light) - 1) * utils.speed_of_light
|
||
d2 = ((cz_pred - jnp.expand_dims(cz_obs, axis=1)) / sigma_v)**2
|
||
scale = jnp.nanmin(d2, axis=1)
|
||
d2 = d2 - jnp.expand_dims(scale, axis=1)
|
||
|
||
# Integrate to get likelihood
|
||
p_cz = jnp.trapezoid(jnp.exp(-0.5 * d2) * p_r / p_r_norm, r, axis=1)
|
||
lkl_ind = jnp.log(p_cz) - scale / 2 - 0.5 * jnp.log(2 * np.pi * sigma_v**2)
|
||
loglike = lkl_ind.sum()
|
||
|
||
return loglike
|
||
|
||
|
||
def likelihood_stretch(stretch_true, stretch_obs, sigma_stretch):
|
||
"""
|
||
Evaluate the terms in the likelihood from stretch
|
||
|
||
Args:
|
||
- stretch_true (np.ndarray): True stretch of the tracers (shape = (Nt,))
|
||
- stretch_obs (np.ndarray): Observed stretch of the tracers (shape = (Nt,))
|
||
- sigma_stretch (float or np.ndarray): Uncertainty on the stretch measurements
|
||
|
||
Returns:
|
||
- loglike (float): The log-likelihood of the data
|
||
"""
|
||
|
||
Nt = stretch_obs.shape[0]
|
||
norm = jnp.where(
|
||
jnp.ndim(sigma_stretch) == 0,
|
||
Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_stretch ** 2),
|
||
jnp.sum(0.5 * jnp.log(2 * jnp.pi * sigma_stretch ** 2))
|
||
)
|
||
loglike = - (
|
||
0.5 * jnp.sum((stretch_obs - stretch_true) ** 2 / sigma_stretch ** 2)
|
||
+ norm
|
||
)
|
||
|
||
return loglike
|
||
|
||
|
||
def likelihood_c(c_true, c_obs, sigma_c):
|
||
"""
|
||
Evaluate the terms in the likelihood from colour
|
||
|
||
Args:
|
||
- c_true (np.ndarray): True colours of the tracers (shape = (Nt,))
|
||
- c_obs (np.ndarray): Observed colours of the tracers (shape = (Nt,))
|
||
- sigma_c (float or np.ndarray): Uncertainty on the colours measurements
|
||
|
||
Returns:
|
||
- loglike (float): The log-likelihood of the data
|
||
"""
|
||
|
||
Nt = c_obs.shape[0]
|
||
norm = jnp.where(
|
||
jnp.ndim(sigma_c) == 0,
|
||
Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_c ** 2),
|
||
jnp.sum(0.5 * jnp.log(2 * jnp.pi * sigma_c ** 2))
|
||
)
|
||
loglike = - (
|
||
0.5 * jnp.sum((c_obs - c_true) ** 2 / sigma_c ** 2)
|
||
+ norm
|
||
)
|
||
|
||
return loglike
|
||
|
||
|
||
def likelihood_m(m_true, m_obs, sigma_m):
|
||
"""
|
||
Evaluate the terms in the likelihood from apparent magntiude
|
||
|
||
Args:
|
||
- m_true (np.ndarray): True apparent magnitude of the tracers (shape = (Nt,))
|
||
- m_obs (np.ndarray): Observed apparent magnitude of the tracers (shape = (Nt,))
|
||
- sigma_m (float or np.ndarray): Uncertainty on the apparent magnitude measurements
|
||
|
||
Returns:
|
||
- loglike (float): The log-likelihood of the data
|
||
"""
|
||
|
||
Nt = m_obs.shape[0]
|
||
norm = jnp.where(
|
||
jnp.ndim(sigma_m) == 0,
|
||
Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_m ** 2),
|
||
jnp.sum(0.5 * jnp.log(2 * jnp.pi * sigma_m ** 2))
|
||
)
|
||
loglike = - (
|
||
0.5 * jnp.sum((m_obs - m_true) ** 2 / sigma_m ** 2)
|
||
+ norm
|
||
)
|
||
|
||
return loglike
|
||
|
||
|
||
def likelihood(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||
cz_obs, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos):
|
||
"""
|
||
Evaluate the likelihood for SN sample
|
||
|
||
Args:
|
||
- alpha (float): Exponent for bias model
|
||
- a_tripp (float): Coefficient of stretch in the Tripp relation
|
||
- b_tripp (float): Coefficient of colour in the Tripp relation
|
||
- M_SN (float): Absolute magnitude of supernovae
|
||
- sigma_SN (float): Intrinsic scatter in the Tripp relation
|
||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||
- m_true (np.ndarray): True apparent magnitudes of the tracers (shape = (Nt,))
|
||
- stretch_true (np.ndarray): True stretch values of the tracers (shape = (Nt,))
|
||
- c_true (np.ndarray): True colour values of the tracers (shape = (Nt,))
|
||
- vbulk (np.ndarray): Bulk velocity of the box (km/s) (shape=(3,))
|
||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||
- omega_m (float): Matter density parameter Om
|
||
- h (float): Hubble constant H0 = 100 h km/s/Mpc
|
||
- L (float): Comoving box size (Mpc/h)
|
||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||
- interp_order (int): Order of interpolation from grid points to the line of sight
|
||
- bias_epsilon (float): Small number to add to 1 + delta to prevent 0^#
|
||
- cz_obs (np.ndarray): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||
- m_obs (np.ndarray): Observed apparent magnitudes of the tracers (shape = (Nt,))
|
||
- stretch_obs (np.ndarray): Observed stretch values of the tracers (shape = (Nt,))
|
||
- c_obs (np.ndarray): Observed colour values of the tracers (shape = (Nt,))
|
||
- sigma_m (float or np.ndarray): Uncertainty on the apparent magnitude measurements
|
||
- sigma_stretch (float or np.ndarray): Uncertainty on the stretch measurements
|
||
- sigma_c (float or np.ndarray): Uncertainty on the colour measurements
|
||
- MB_pos (np.ndarray): Comoving coordinates of integration points to use in likelihood (Mpc/h).
|
||
The shape is (3, Nt, Nsig)
|
||
|
||
Returns:
|
||
- loglike (float): The log-likelihood of the data
|
||
"""
|
||
|
||
|
||
loglike_vel = likelihood_vel(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||
cz_obs, MB_pos)
|
||
loglike_stretch = likelihood_stretch(stretch_true, stretch_obs, sigma_stretch)
|
||
loglike_c = likelihood_c(c_true, c_obs, sigma_c)
|
||
loglike_m = likelihood_m(m_true, m_obs, sigma_m)
|
||
|
||
loglike = loglike_vel + loglike_stretch + loglike_c + loglike_m
|
||
|
||
return loglike
|
||
|
||
|
||
def test_likelihood_scan(prior, alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos):
|
||
"""
|
||
Plot likelihood as we scan through the paramaters [alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v]
|
||
to verify that the likelihood shape looks reasonable
|
||
|
||
Args:
|
||
- prior (dict): Upper and lower bounds for a uniform prior for the parameters
|
||
- alpha (float): Exponent for bias model
|
||
- a_tripp (float): Coefficient of stretch in the Tripp relation
|
||
- b_tripp (float): Coefficient of colour in the Tripp relation
|
||
- M_SN (float): Absolute magnitude of supernovae
|
||
- sigma_SN (float): Intrinsic scatter in the Tripp relation
|
||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||
- m_true (np.ndarray): True apparent magnitudes of the tracers (shape = (Nt,))
|
||
- stretch_true (np.ndarray): True stretch values of the tracers (shape = (Nt,))
|
||
- c_true (np.ndarray): True colour values of the tracers (shape = (Nt,))
|
||
- vbulk (np.ndarray): Bulk velocity of the box (km/s) (shape=(3,))
|
||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||
- omega_m (float): Matter density parameter Om
|
||
- h (float): Hubble constant H0 = 100 h km/s/Mpc
|
||
- L (float): Comoving box size (Mpc/h)
|
||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||
- interp_order (int): Order of interpolation from grid points to the line of sight
|
||
- bias_epsilon (float): Small number to add to 1 + delta to prevent 0^#
|
||
- czCMB (np.ndarray): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||
- m_obs (np.ndarray): Observed apparent magnitudes of the tracers (shape = (Nt,))
|
||
- stretch_obs (np.ndarray): Observed stretch values of the tracers (shape = (Nt,))
|
||
- c_obs (np.ndarray): Observed colour values of the tracers (shape = (Nt,))
|
||
- sigma_m (float or np.ndarray): Uncertainty on the apparent magnitude measurements
|
||
- sigma_stretch (float or np.ndarray): Uncertainty on the stretch measurements
|
||
- sigma_c (float or np.ndarray): Uncertainty on the colour measurements
|
||
- MB_pos (np.ndarray): Comoving coordinates of integration points to use in likelihood (Mpc/h).
|
||
The shape is (3, Nt, Nsig)
|
||
|
||
"""
|
||
|
||
|
||
pars = [alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v]
|
||
par_names = ['alpha', 'a_tripp', 'b_tripp', 'M_SN', 'sigma_SN', 'sigma_v']
|
||
|
||
orig_ll = - likelihood(*pars, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||
|
||
for i, name in enumerate(par_names):
|
||
|
||
myprint(f'Scanning {name}')
|
||
|
||
if name in prior:
|
||
x = np.linspace(*prior[name], 20)
|
||
else:
|
||
pmin = pars[i] * 0.2
|
||
pmax = pars[i] * 2.0
|
||
x = np.linspace(pmin, pmax, 20)
|
||
|
||
all_ll = np.empty(x.shape)
|
||
orig_x = pars[i]
|
||
for j, xx in enumerate(x):
|
||
pars[i] = xx
|
||
all_ll[j] = - likelihood(*pars, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||
pars[i] = orig_x
|
||
|
||
plt.figure()
|
||
plt.plot(x, all_ll, '.')
|
||
plt.axvline(orig_x, ls='--', color='k')
|
||
plt.axhline(orig_ll, ls='--', color='k')
|
||
plt.xlabel(name)
|
||
plt.ylabel('Negative log-likelihood')
|
||
plt.savefig(f'sn_likelihood_scan_{name}.png')
|
||
fig = plt.gcf()
|
||
plt.clf()
|
||
plt.close(fig)
|
||
|
||
return
|
||
|
||
|
||
def run_mcmc(num_warmup, num_samples, prior, initial, dens, vel, cpar, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos,):
|
||
"""
|
||
Run MCMC over the model parameters
|
||
|
||
Args:
|
||
- num_warmup (int): Number of warmup steps to take in the MCMC
|
||
- num_samples (int): Number of samples to take in the MCMC
|
||
- prior (dict): Upper and lower bounds for a uniform prior for the parameters
|
||
- initial (dict): Initial values for the MCMC
|
||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||
- cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters to use
|
||
- L (float): Comoving box size (Mpc/h)
|
||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||
- interp_order (int): Order of interpolation from grid points to the line of sight
|
||
- bias_epsilon (float): Small number to add to 1 + delta to prevent 0^#
|
||
- czCMB (np.ndarray): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||
- m_obs (np.ndarray): Observed apparent magnitudes of the tracers (shape = (Nt,))
|
||
- stretch_obs (np.ndarray): Observed stretch values of the tracers (shape = (Nt,))
|
||
- c_obs (np.ndarray): Observed colour values of the tracers (shape = (Nt,))
|
||
- sigma_m (float or np.ndarray): Uncertainty on the apparent magnitude measurements
|
||
- sigma_stretch (float or np.ndarray): Uncertainty on the stretch measurements
|
||
- sigma_c (float or np.ndarray): Uncertainty on the colour measurements
|
||
- MB_pos (np.ndarray): Comoving coordinates of integration points to use in likelihood (Mpc/h).
|
||
The shape is (3, Nt, Nsig)
|
||
|
||
Returns:
|
||
- mcmc (numpyro.infer.MCMC): MCMC object which has been run
|
||
|
||
"""
|
||
|
||
Nt = stretch_obs.shape[0]
|
||
omega_m = cpar.omega_m
|
||
h = cpar.h
|
||
sigma_bulk = utils.get_sigma_bulk(L, cpar)
|
||
|
||
|
||
def sn_model():
|
||
|
||
alpha = numpyro.sample("alpha", dist.Uniform(*prior['alpha']))
|
||
a_tripp = numpyro.sample("a_tripp", dist.Uniform(*prior['a_tripp']))
|
||
b_tripp = numpyro.sample("b_tripp", dist.Uniform(*prior['b_tripp']))
|
||
M_SN = numpyro.sample("M_SN", dist.Uniform(*prior['M_SN']))
|
||
sigma_SN = numpyro.sample("sigma_SN", dist.HalfCauchy(1.0))
|
||
sigma_v = numpyro.sample("sigma_v", dist.Uniform(*prior['sigma_v']))
|
||
|
||
hyper_mean_m = numpyro.sample("hyper_mean_m", dist.Uniform(*prior['hyper_mean_m']))
|
||
hyper_sigma_m = numpyro.sample("hyper_sigma_m", dist.HalfCauchy(1.0)) # Equivalent to 1/sigma prior
|
||
hyper_mean_stretch = numpyro.sample("hyper_mean_stretch", dist.Uniform(*prior['hyper_mean_stretch']))
|
||
hyper_sigma_stretch = numpyro.sample("hyper_sigma_stretch", dist.HalfCauchy(1.0)) # Equivalent to 1/sigma prior
|
||
hyper_mean_c = numpyro.sample("hyper_mean_c", dist.Uniform(*prior['hyper_mean_c']))
|
||
hyper_sigma_c = numpyro.sample("hyper_sigma_c", dist.HalfCauchy(1.0)) # Equivalent to 1/sigma prior
|
||
|
||
# Sample correlation matrix using LKJ prior
|
||
L_corr = numpyro.sample("L_corr", dist.LKJCholesky(3, concentration=1.0)) # Cholesky factor of correlation matrix
|
||
corr_matrix = L_corr @ L_corr.T # Convert to full correlation matrix
|
||
|
||
# Construct full covariance matrix: Σ = D * Corr * D
|
||
hyper_mean = jnp.array([hyper_mean_m, hyper_mean_stretch, hyper_mean_c])
|
||
hyper_sigma = jnp.array([hyper_sigma_m, hyper_sigma_stretch, hyper_sigma_c])
|
||
hyper_cov = jnp.diag(hyper_sigma) @ corr_matrix @ jnp.diag(hyper_sigma)
|
||
|
||
# Sample m_true and eta_true
|
||
x = numpyro.sample("true_vars", dist.MultivariateNormal(hyper_mean, hyper_cov), sample_shape=(Nt,))
|
||
m_true = numpyro.deterministic("m_true", x[:, 0])
|
||
stretch_true = numpyro.deterministic("stretch_true", x[:, 1])
|
||
c_true = numpyro.deterministic("c_true", x[:, 2])
|
||
|
||
# Sample bulk velocity
|
||
vbulk_x = numpyro.sample("vbulk_x", dist.Normal(0, sigma_bulk / jnp.sqrt(3)))
|
||
vbulk_y = numpyro.sample("vbulk_y", dist.Normal(0, sigma_bulk / jnp.sqrt(3)))
|
||
vbulk_z = numpyro.sample("vbulk_z", dist.Normal(0, sigma_bulk / jnp.sqrt(3)))
|
||
|
||
# Evaluate the likelihood
|
||
numpyro.sample("obs", SNLikelihood(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk_x, vbulk_y, vbulk_z), obs=jnp.array([m_obs, stretch_obs, c_obs]))
|
||
|
||
|
||
class SNLikelihood(dist.Distribution):
|
||
support = dist.constraints.real
|
||
|
||
def __init__(self, alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk_x, vbulk_y, vbulk_z):
|
||
self.alpha, self.a_tripp, self.b_tripp, self.M_SN, self.sigma_SN, self.sigma_v, self.m_true, self.stretch_true, self.c_true, self.vbulk_x, self.vbulk_y, self.vbulk_z = dist.util.promote_shapes(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk_x, vbulk_y, vbulk_z)
|
||
batch_shape = lax.broadcast_shapes(
|
||
jnp.shape(alpha),
|
||
jnp.shape(a_tripp),
|
||
jnp.shape(b_tripp),
|
||
jnp.shape(M_SN),
|
||
jnp.shape(sigma_SN),
|
||
jnp.shape(sigma_v),
|
||
jnp.shape(m_true),
|
||
jnp.shape(stretch_true),
|
||
jnp.shape(c_true),
|
||
jnp.shape(vbulk_x),
|
||
jnp.shape(vbulk_y),
|
||
jnp.shape(vbulk_z),
|
||
)
|
||
super(SNLikelihood, self).__init__(batch_shape = batch_shape)
|
||
|
||
def sample(self, key, sample_shape=()):
|
||
raise NotImplementedError
|
||
|
||
def log_prob(self, value):
|
||
vbulk = jnp.array([self.vbulk_x, self.vbulk_y, self.vbulk_z])
|
||
loglike = likelihood(self.alpha, self.a_tripp, self.b_tripp, self.M_SN, self.sigma_SN, self.sigma_v,
|
||
self.m_true, self.stretch_true, self.c_true, vbulk,
|
||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||
return loglike
|
||
|
||
rng_key = random.PRNGKey(6)
|
||
rng_key, rng_key_ = random.split(rng_key)
|
||
values = initial
|
||
values['true_vars'] = jnp.array([m_obs, stretch_obs, c_obs]).T
|
||
values['L_corr'] = jnp.identity(3)
|
||
values['vbulk_x'] = 0.
|
||
values['vbulk_y'] = 0.
|
||
values['vbulk_z'] = 0.
|
||
myprint('Preparing MCMC kernel')
|
||
kernel = numpyro.infer.NUTS(sn_model,
|
||
init_strategy=numpyro.infer.initialization.init_to_value(values=initial)
|
||
)
|
||
mcmc = numpyro.infer.MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples)
|
||
myprint('Running MCMC')
|
||
mcmc.run(rng_key_)
|
||
mcmc.print_summary()
|
||
|
||
return mcmc
|
||
|
||
|
||
|
||
def process_mcmc_run(mcmc, param_labels, truths, true_vars):
|
||
"""
|
||
Make summary plots from the MCMC and save these to file
|
||
|
||
Args:
|
||
- mcmc (numpyro.infer.MCMC): MCMC object which has been run
|
||
- param_labels (list[str]): Names of the parameters to plot
|
||
- truths (list[float]): True values of the parameters to plot. If unknown, then entry is None
|
||
- true_vars (dict): True values of the observables to compare against inferred ones
|
||
"""
|
||
|
||
# Convert samples into a single array
|
||
samples = mcmc.get_samples()
|
||
|
||
samps = jnp.empty((len(samples[param_labels[0]]), len(param_labels)))
|
||
for i, p in enumerate(param_labels):
|
||
if p.startswith('hyper_corr'):
|
||
L_corr = samples['L_corr']
|
||
corr_matrix = jnp.matmul(L_corr, jnp.transpose(L_corr, (0, 2, 1)))
|
||
if p == 'hyper_corr_mx':
|
||
samps = samps.at[:,i].set(corr_matrix[:,0,1])
|
||
elif p == 'hyper_corr_mc':
|
||
samps = samps.at[:,i].set(corr_matrix[:,0,2])
|
||
elif p == 'hyper_corr_xc':
|
||
samps = samps.at[:,i].set(corr_matrix[:,1,2])
|
||
else:
|
||
raise NotImplementedError
|
||
else:
|
||
samps = samps.at[:,i].set(samples[p])
|
||
|
||
# Trace plot of non-redshift quantities
|
||
fig1, axs1 = plt.subplots(samps.shape[1], 1, figsize=(6,3*samps.shape[1]), sharex=True)
|
||
axs1 = np.atleast_1d(axs1)
|
||
for i in range(samps.shape[1]):
|
||
axs1[i].plot(samps[:,i])
|
||
axs1[i].set_ylabel(param_labels[i])
|
||
if truths[i] is not None:
|
||
axs1[i].axhline(truths[i], color='k')
|
||
axs1[-1].set_xlabel('Step Number')
|
||
fig1.tight_layout()
|
||
fig1.savefig('sn_trace.png')
|
||
|
||
# Corner plot
|
||
fig2, axs2 = plt.subplots(samps.shape[1], samps.shape[1], figsize=(25,25))
|
||
corner.corner(
|
||
np.array(samps),
|
||
labels=param_labels,
|
||
fig=fig2,
|
||
truths=truths
|
||
)
|
||
fig2.savefig('sn_corner.png')
|
||
|
||
# True vs predicted
|
||
for var in ['stretch', 'c', 'm']:
|
||
vname = var + '_true'
|
||
if vname in samples.keys():
|
||
xtrue = true_vars[var]
|
||
xpred_median = np.median(samples[vname], axis=0)
|
||
xpred_plus = np.percentile(samples[vname], 84, axis=0) - xpred_median
|
||
xpred_minus = xpred_median - np.percentile(samples[vname], 16, axis=0)
|
||
|
||
fig3, axs3 = plt.subplots(2, 1, figsize=(10,8), sharex=True)
|
||
plot_kwargs = {'fmt':'.', 'markersize':3, 'zorder':10,
|
||
'capsize':1, 'elinewidth':1, 'alpha':1}
|
||
axs3[0].errorbar(xtrue, xpred_median, yerr=[xpred_minus, xpred_plus], **plot_kwargs)
|
||
axs3[1].errorbar(xtrue, xpred_median - xtrue, yerr=[xpred_minus, xpred_plus], **plot_kwargs)
|
||
axs3[1].set_xlabel('True')
|
||
axs3[0].set_ylabel('Predicted')
|
||
axs3[1].set_ylabel('Predicted - True')
|
||
xlim = axs3[0].get_xlim()
|
||
ylim = axs3[0].get_ylim()
|
||
axs3[0].plot(xlim, xlim, color='k', zorder=0)
|
||
axs3[0].set_xlim(xlim)
|
||
axs3[0].set_ylim(ylim)
|
||
axs3[1].axhline(0, color='k', zorder=0)
|
||
fig3.suptitle(var)
|
||
fig3.align_labels()
|
||
fig3.tight_layout()
|
||
fig3.savefig(f'sn_true_predicted_{var}.png')
|
||
|
||
return
|
||
|
||
|
||
|
||
def main():
|
||
|
||
myprint('Beginning')
|
||
|
||
sigma_m, sigma_stretch, sigma_c, hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma = estimate_data_parameters()
|
||
|
||
# Other parameters to use
|
||
L = 500.0
|
||
N = 64
|
||
xmin = -L/2
|
||
R_lim = L / 2
|
||
Rmax = 100
|
||
Nt = 100
|
||
alpha = 1.4
|
||
sigma_v = 150
|
||
interp_order = 1
|
||
bias_epsilon = 1.e-7
|
||
Nint_points = 201
|
||
Nsig = 10
|
||
frac_sigma_r = 0.07 # WANT A BETTER WAY OF DOING THIS - ESTIMATE THROUGH SIGMAS FROM Tripp formula
|
||
|
||
# These values are from Table 6 of Boruah et al. 2020
|
||
a_tripp = 0.140
|
||
b_tripp = 2.78
|
||
M_SN = - 18.558
|
||
sigma_SN = 0.082
|
||
|
||
num_warmup = 1000
|
||
num_samples = 2000
|
||
|
||
# Make mock
|
||
np.random.seed(123)
|
||
cpar, dens, vel = get_fields(L, N, xmin)
|
||
RA, Dec, czCMB, m_true, stretch_true, c_true, m_obs, stretch_obs, c_obs, xtrue, vbulk = create_mock(
|
||
Nt, L, xmin, cpar, dens, vel, Rmax, alpha,
|
||
a_tripp, b_tripp, M_SN, sigma_SN, sigma_m, sigma_stretch, sigma_c,
|
||
hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma,
|
||
sigma_v, interp_order=interp_order, bias_epsilon=bias_epsilon)
|
||
MB_pos = generateMBData(RA, Dec, czCMB, L, N, R_lim, Nsig, Nint_points, sigma_v, frac_sigma_r)
|
||
|
||
initial = {
|
||
'a_tripp': a_tripp,
|
||
'b_tripp': b_tripp,
|
||
'M_SN': M_SN,
|
||
'sigma_SN': sigma_SN,
|
||
'sigma_v': sigma_v,
|
||
'hyper_mean_stretch': hyper_stretch_mu,
|
||
'hyper_sigma_stretch': hyper_stretch_sigma,
|
||
'hyper_mean_c': hyper_c_mu,
|
||
'hyper_sigma_c': hyper_c_sigma,
|
||
'hyper_mean_m': np.median(m_obs),
|
||
'hyper_sigma_m': (np.percentile(m_obs, 84) - np.percentile(m_obs, 16)) / 2,
|
||
}
|
||
prior = {
|
||
'alpha': [0.5, 6],
|
||
'a_tripp': [0.01, 0.2],
|
||
'b_tripp': [2.5, 4.5],
|
||
'M_SN': [-19.5, -17.5],
|
||
'hyper_mean_stretch': [hyper_stretch_mu - hyper_stretch_sigma, hyper_stretch_mu + hyper_stretch_sigma],
|
||
'hyper_mean_c':[hyper_c_mu - hyper_c_sigma, hyper_c_mu + hyper_c_sigma],
|
||
'hyper_mean_m':[initial['hyper_mean_m'] - initial['hyper_sigma_m'], initial['hyper_mean_m'] + initial['hyper_sigma_m']],
|
||
'sigma_v': [10, 3000],
|
||
}
|
||
|
||
# Test likelihood
|
||
loglike = likelihood(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, cpar.omega_m, cpar.h, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||
myprint(f'loglike {loglike}')
|
||
|
||
# Scan over parameters to make plots verifying behaviour
|
||
test_likelihood_scan(prior, alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||
dens, vel, cpar.omega_m, cpar.h, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||
|
||
|
||
# Run a MCMC
|
||
mcmc = run_mcmc(num_warmup, num_samples, prior, initial, dens, vel, cpar, L, xmin, interp_order, bias_epsilon,
|
||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||
param_labels = ['alpha', 'a_tripp', 'b_tripp', 'M_SN', 'sigma_SN', 'sigma_v',
|
||
'hyper_mean_m', 'hyper_sigma_m',
|
||
'hyper_mean_stretch', 'hyper_sigma_stretch', 'hyper_mean_c', 'hyper_sigma_c',
|
||
'hyper_corr_mx', 'hyper_corr_mc', 'hyper_corr_xc',
|
||
'vbulk_x', 'vbulk_y', 'vbulk_z']
|
||
truths = [alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v,
|
||
None, None,
|
||
hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma,
|
||
None, None, None,
|
||
vbulk[0], vbulk[1], vbulk[2]]
|
||
true_vars = {'m':m_true, 'stretch':stretch_true, 'c': c_true}
|
||
process_mcmc_run(mcmc, param_labels, truths, true_vars)
|
||
|
||
return
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|
||
|