import aquila_borg as borg import configparser import numpy as np import matplotlib.pyplot as plt import borg_velocity.likelihood as likelihood import borg_velocity.forwards as forwards import borg_velocity.utils as utils ini_file = '../conf/basic_ini.ini' test_scaling = True test_sigma8 = True test_omegam = True test_alpha = True test_muA = True # Input box box_in = borg.forward.BoxModel() config = configparser.ConfigParser() config.read(ini_file) box_in.L = (float(config['system']['L0']), float(config['system']['L1']), float(config['system']['L2'])) box_in.N = (int(config['system']['N0']), int(config['system']['N1']), int(config['system']['N2'])) box_in.xmin = (float(config['system']['corner0']), float(config['system']['corner1']), float(config['system']['corner2'])) # Setup BORG forward model and likelihood model = likelihood.build_gravity_model(None, box_in, ini_file=ini_file) cosmo = utils.get_cosmopar(ini_file) model.setCosmoParams(cosmo) fwd_param = forwards.NullForward(box_in) fwd_vel = likelihood.fwd_vel mylike = likelihood.VelocityBORGLikelihood(model, fwd_param, fwd_vel, ini_file) # Create mock data state = borg.likelihood.MarkovState() mylike.initializeLikelihood(state) mylike.updateCosmology(cosmo) s_hat = np.fft.rfftn(np.random.randn(*box_in.N)) / box_in.Ntot ** (0.5) mylike.generateMockData(s_hat, state) if test_scaling: all_scale = np.linspace(0.5, 1.5, 100) all_lkl = np.empty(all_scale.shape) for i, scale in enumerate(all_scale): all_lkl[i] = mylike.logLikelihoodComplex(scale * s_hat, None) fid_lkl = mylike.logLikelihoodComplex(s_hat, None) all_lkl -= fid_lkl all_lkl = np.exp(-all_lkl) fig, ax = plt.subplots(1, 1, figsize=(5,5)) ax.plot(all_scale, all_lkl) ax.axhline(y=0, color='k') ax.axvline(x=1, color='k') ax.set_xlabel(r'$\hat{s}$ scaling') ax.set_ylabel(r'$\mathcal{L}$') ax.set_xlim(all_scale.min(), all_scale.max()) fig.tight_layout() fig.savefig('../figs/scaling_test.png') fig.clf() plt.close(fig) # Test sigma8 if test_sigma8: all_sigma8 = np.linspace(0.5, 1.2, 100) all_lkl = np.empty(all_sigma8.shape) cosmo_true = mylike.fwd.getCosmoParams() cosmo = mylike.fwd.getCosmoParams() for i, sigma8 in enumerate(all_sigma8): cosmo.sigma8 = sigma8 mylike.updateCosmology(cosmo) all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None) mylike.updateCosmology(cosmo_true) fid_lkl = mylike.logLikelihoodComplex(s_hat, None) all_lkl -= fid_lkl all_lkl = np.exp(-all_lkl) fig, ax = plt.subplots(1, 1, figsize=(5,5)) ax.plot(all_sigma8, all_lkl) ax.axhline(y=0, color='k') ax.axvline(x=cosmo_true.sigma8, color='k') ax.set_xlabel(r'$\sigma_8$') ax.set_ylabel(r'$\mathcal{L}$') fig.tight_layout() fig.savefig('../figs/sigma8_test.png') fig.clf() plt.close(fig) # Test sigma8 if test_omegam: all_omegam = np.linspace(0.1, 0.6, 100) all_lkl = np.empty(all_omegam.shape) cosmo_true = mylike.fwd.getCosmoParams() cosmo = mylike.fwd.getCosmoParams() for i, omegam in enumerate(all_omegam): cosmo.omega_m = omegam mylike.updateCosmology(cosmo) all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None) mylike.updateCosmology(cosmo_true) fid_lkl = mylike.logLikelihoodComplex(s_hat, None) all_lkl -= fid_lkl all_lkl = np.exp(-all_lkl) fig, ax = plt.subplots(1, 1, figsize=(5,5)) ax.plot(all_omegam, all_lkl) ax.axhline(y=0, color='k') ax.axvline(x=cosmo_true.omega_m, color='k') ax.set_xlabel(r'$\Omega_{\rm m}$') ax.set_ylabel(r'$\mathcal{L}$') fig.tight_layout() fig.savefig('../figs/omegam_test.png') fig.clf() plt.close(fig) # Test bias model if test_alpha: all_alpha = np.linspace(-2.0, 5.0, 100) all_lkl = np.empty(all_alpha.shape) for i, alpha in enumerate(all_alpha): mylike.fwd_param.setModelParams({'alpha0':alpha}) all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None) mylike.fwd_param.setModelParams({'alpha0':mylike.alpha[0]}) fid_lkl = mylike.logLikelihoodComplex(s_hat, None) all_lkl -= fid_lkl all_lkl = np.exp(-all_lkl) fig, ax = plt.subplots(1, 1, figsize=(5,5)) ax.plot(all_alpha, all_lkl) ax.axhline(y=0, color='k') ax.axvline(x=mylike.alpha[0], color='k') ax.set_xlabel(r'$\alpha_0$') ax.set_ylabel(r'$\mathcal{L}$') fig.tight_layout() fig.savefig('../figs/alpha_test.png') fig.clf() plt.close(fig) # Test bias model if test_muA: all_muA = np.linspace(0.95, 1.05, 100) all_lkl = np.empty(all_muA.shape) for i, muA in enumerate(all_muA): mylike.fwd_param.setModelParams({'mua0':muA}) all_lkl[i] = mylike.logLikelihoodComplex(s_hat, None) mylike.fwd_param.setModelParams({'mua0':mylike.muA[0]}) fid_lkl = mylike.logLikelihoodComplex(s_hat, None) all_lkl -= fid_lkl all_lkl = np.exp(-all_lkl) fig, ax = plt.subplots(1, 1, figsize=(5,5)) ax.plot(all_muA, all_lkl) ax.axhline(y=0, color='k') ax.axvline(x=mylike.muA[0], color='k') ax.set_xlabel(r'$\mu_0$') ax.set_ylabel(r'$\mathcal{L}$') fig.tight_layout() fig.savefig('../figs/muA_test.png') fig.clf() plt.close(fig)