SN mock making and likelihood for testing
159
tests/SN_tests.ipynb
Normal file
BIN
tests/corner.png
Before Width: | Height: | Size: 1.1 MiB After Width: | Height: | Size: 1.2 MiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
BIN
tests/likelihood_scan_mthresh.png
Normal file
After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
533
tests/sn_inference.py
Normal file
|
@ -0,0 +1,533 @@
|
|||
import aquila_borg as borg
|
||||
import pandas as pd
|
||||
import linecache
|
||||
import numpy as np
|
||||
from astropy.coordinates import SkyCoord
|
||||
import astropy.units as apu
|
||||
import jax.numpy as jnp
|
||||
import jax
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import borg_velocity.poisson_process as poisson_process
|
||||
import borg_velocity.projection as projection
|
||||
import borg_velocity.utils as utils
|
||||
|
||||
from tfr_inference import get_fields, generateMBData
|
||||
|
||||
# Output stream management
|
||||
cons = borg.console()
|
||||
myprint = lambda x: cons.print_std(x) if type(x) == str else cons.print_std(repr(x))
|
||||
|
||||
|
||||
def create_mock(Nt, L, xmin, cpar, dens, vel, Rmax, alpha,
|
||||
a_tripp, b_tripp, M_SN, sigma_SN, sigma_m, sigma_stretch, sigma_c,
|
||||
hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma,
|
||||
sigma_v, interp_order=1, bias_epsilon=1e-7):
|
||||
"""
|
||||
Create mock TFR catalogue from a density and velocity field
|
||||
|
||||
Args:
|
||||
- Nt (int): Number of tracers to produce
|
||||
- L (float): Box length (Mpc/h)
|
||||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||||
- cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters to use
|
||||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||||
- Rmax (float): Maximum allowed comoving radius of a tracer (Mpc/h)
|
||||
- alpha (float): Exponent for bias model
|
||||
|
||||
- sigma_m (float): Uncertainty on the apparent magnitude measurements
|
||||
|
||||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||||
- interp_order (int, default=1): Order of interpolation from grid points to the line of sight
|
||||
- bias_epsilon (float, default=1e-7): Small number to add to 1 + delta to prevent 0^#
|
||||
|
||||
Returns:
|
||||
- all_RA (np.ndarrary): Right Ascension (degrees) of the tracers (shape = (Nt,))
|
||||
- all_Dec (np.ndarrary): Dec (np.ndarray): Delination (degrees) of the tracers (shape = (Nt,))
|
||||
- czCMB (np.ndarrary): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||||
- all_mtrue (np.ndarrary): True apparent magnitudes of the tracers (shape = (Nt,))
|
||||
|
||||
- all_mobs (np.ndarrary): Observed apparent magnitudes of the tracers (shape = (Nt,))
|
||||
|
||||
- all_xtrue (np.ndarrary): True comoving coordinates of the tracers (Mpc/h) (shape = (3, Nt))
|
||||
- vbulk (np.ndarray): The bulk velocity of the box (km/s)
|
||||
|
||||
"""
|
||||
|
||||
# Initialize lists to store valid positions and corresponding sig_mu values
|
||||
all_xtrue = np.empty((3, Nt))
|
||||
all_mtrue = np.empty(Nt)
|
||||
all_stretchtrue = np.empty(Nt)
|
||||
all_ctrue = np.empty(Nt)
|
||||
all_mobs = np.empty(Nt)
|
||||
all_stretchobs = np.empty(Nt)
|
||||
all_cobs = np.empty(Nt)
|
||||
all_RA = np.empty(Nt)
|
||||
all_Dec = np.empty(Nt)
|
||||
|
||||
# Counter for accepted positions
|
||||
accepted_count = 0
|
||||
|
||||
# Bias model
|
||||
phi = (1. + dens + bias_epsilon) ** alpha
|
||||
|
||||
# Only use centre of box
|
||||
x = np.linspace(xmin, xmin + L, dens.shape[0]+1)
|
||||
i0 = np.argmin(np.abs(x + Rmax))
|
||||
i1 = np.argmin(np.abs(x - Rmax))
|
||||
L_small = x[i1] - x[i0]
|
||||
xmin_small = x[i0]
|
||||
phi_small = phi[i0:i1, i0:i1, i0:i1]
|
||||
|
||||
# Loop until we have Nt valid positions
|
||||
while accepted_count < Nt:
|
||||
|
||||
# Generate positions (comoving)
|
||||
xtrue = poisson_process.sample_3d(phi_small, Nt, L_small, (xmin_small, xmin_small, xmin_small))
|
||||
|
||||
# Convert to RA, Dec, Distance (comoving)
|
||||
rtrue = np.sqrt(np.sum(xtrue** 2, axis=0)) # Mpc/h
|
||||
c = SkyCoord(x=xtrue[0], y=xtrue[1], z=xtrue[2], representation_type='cartesian')
|
||||
RA = c.spherical.lon.degree
|
||||
Dec = c.spherical.lat.degree
|
||||
r_hat = np.array(SkyCoord(ra=RA*apu.deg, dec=Dec*apu.deg).cartesian.xyz)
|
||||
|
||||
# Compute cosmological redshift
|
||||
zcosmo = utils.z_cos(rtrue, cpar.omega_m)
|
||||
|
||||
# Compute luminosity distance
|
||||
# DO I NEED TO DO /h???
|
||||
dL = (1 + zcosmo) * rtrue / cpar.h # Mpc
|
||||
|
||||
# Compute true distance modulus
|
||||
mutrue = 5 * np.log10(dL) + 25
|
||||
|
||||
# Sample true stretch and colour (c) from its prior
|
||||
stretchtrue = hyper_stretch_mu + hyper_stretch_sigma * np.random.randn(Nt)
|
||||
ctrue = hyper_c_mu + hyper_c_sigma * np.random.randn(Nt)
|
||||
|
||||
# Obtain muSN from mutrue using the intrinsic scatter
|
||||
muSN = mutrue + sigma_SN * np.random.randn(Nt)
|
||||
|
||||
# Obtain apparent magnitude from the TFR
|
||||
mtrue = muSN - (a_tripp * stretchtrue - b_tripp * ctrue) + M_SN
|
||||
|
||||
# Scatter true observed apparent magnitudes and linewidths
|
||||
mobs = mtrue + sigma_m * np.random.randn(Nt)
|
||||
stretchobs = stretchtrue + sigma_stretch * np.random.randn(Nt)
|
||||
cobs = ctrue + sigma_c * np.random.randn(Nt)
|
||||
|
||||
# Apply apparement magnitude cut
|
||||
m = np.ones(mobs.shape, dtype=bool)
|
||||
mtrue = mtrue[m]
|
||||
stretchtrue = stretchtrue[m]
|
||||
ctrue = ctrue[m]
|
||||
mobs = mobs[m]
|
||||
stretchobs = stretchobs[m]
|
||||
cobs = cobs[m]
|
||||
xtrue = xtrue[:,m]
|
||||
RA = RA[m]
|
||||
Dec = Dec[m]
|
||||
|
||||
# Calculate how many valid positions we need to reach Nt
|
||||
remaining_needed = Nt - accepted_count
|
||||
selected_count = min(xtrue.shape[1], remaining_needed)
|
||||
|
||||
# Append only the needed number of valid positions
|
||||
imin = accepted_count
|
||||
imax = accepted_count + selected_count
|
||||
all_xtrue[:,imin:imax] = xtrue[:,:selected_count]
|
||||
all_mtrue[imin:imax] = mtrue[:selected_count]
|
||||
all_stretchtrue[imin:imax] = stretchtrue[:selected_count]
|
||||
all_ctrue[imin:imax] = ctrue[:selected_count]
|
||||
all_mobs[imin:imax] = mobs[:selected_count]
|
||||
all_stretchobs[imin:imax] = stretchobs[:selected_count]
|
||||
all_cobs[imin:imax] = cobs[:selected_count]
|
||||
all_RA[imin:imax] = RA[:selected_count]
|
||||
all_Dec[imin:imax] = Dec[:selected_count]
|
||||
|
||||
# Update the accepted count
|
||||
accepted_count += selected_count
|
||||
|
||||
myprint(f'\tMade {accepted_count} of {Nt}')
|
||||
|
||||
# Obtain a bulk velocity
|
||||
vhat = np.random.randn(3)
|
||||
vhat = vhat / np.linalg.norm(vhat)
|
||||
vbulk = np.random.randn() * utils.get_sigma_bulk(L, cpar)
|
||||
vbulk = vhat * vbulk
|
||||
|
||||
# Get the radial component of the peculiar velocity at the positions of the objects
|
||||
myprint('Obtaining peculiar velocities')
|
||||
tracer_vel = projection.interp_field(
|
||||
vel,
|
||||
np.expand_dims(all_xtrue, axis=2),
|
||||
L,
|
||||
np.array([xmin, xmin, xmin]),
|
||||
interp_order
|
||||
) # km/s
|
||||
myprint('Adding bulk velocity')
|
||||
tracer_vel = tracer_vel + vbulk[:,None,None]
|
||||
myprint('Radial projection')
|
||||
vr_true = np.squeeze(projection.project_radial(
|
||||
tracer_vel,
|
||||
np.expand_dims(all_xtrue, axis=2),
|
||||
np.zeros(3,)
|
||||
)) # km/s
|
||||
|
||||
# Recompute cosmological redshift
|
||||
rtrue = jnp.sqrt(jnp.sum(all_xtrue ** 2, axis=0))
|
||||
zcosmo = utils.z_cos(rtrue, cpar.omega_m)
|
||||
|
||||
# Obtain total redshift
|
||||
vr_noised = vr_true + sigma_v * np.random.randn(Nt)
|
||||
czCMB = ((1 + zcosmo) * (1 + vr_noised / utils.speed_of_light) - 1) * utils.speed_of_light
|
||||
|
||||
return all_RA, all_Dec, czCMB, all_mtrue, all_stretchtrue, all_ctrue, all_mobs, all_stretchobs, all_cobs, all_xtrue, vbulk
|
||||
|
||||
|
||||
def estimate_data_parameters():
|
||||
"""
|
||||
Using Foundation DR1, estimate some parameters to use in mock generation.
|
||||
|
||||
"""
|
||||
|
||||
fname = '/data101/bartlett/fsigma8/PV_data/Foundation_DR1/Foundation_DR1.FITRES.TEXT'
|
||||
|
||||
# Get header
|
||||
columns = ['SN'] + linecache.getline(fname, 6).strip().split()[1:]
|
||||
df = pd.read_csv(fname, sep="\s+", skipinitialspace=True, skiprows=7, names=columns)
|
||||
|
||||
zCMB = df['zCMB']
|
||||
m = df['mB']
|
||||
m_err = df['mBERR']
|
||||
|
||||
x1 = df['x1']
|
||||
hyper_stretch_mu = np.median(x1)
|
||||
hyper_stretch_sigma = (np.percentile(x1, 84) - np.percentile(x1, 16)) / 2
|
||||
|
||||
c = df['c']
|
||||
hyper_c_mu = np.median(c)
|
||||
hyper_c_sigma = (np.percentile(c, 84) - np.percentile(c, 16)) / 2
|
||||
|
||||
sigma_m = np.median(df['mBERR'])
|
||||
sigma_stretch = np.median(df['x1ERR'])
|
||||
sigma_c = np.median(df['cERR'])
|
||||
|
||||
return sigma_m, sigma_stretch, sigma_c, hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma
|
||||
|
||||
|
||||
|
||||
def likelihood_vel(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
cz_obs, MB_pos):
|
||||
"""
|
||||
Evaluate the terms in the likelihood from the velocity and malmquist bias
|
||||
|
||||
Args:
|
||||
- alpha (float): Exponent for bias model
|
||||
|
||||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||||
- m_true (np.ndarray): True apparent magnitudes of the tracers (shape = (Nt,))
|
||||
|
||||
- vbulk (np.ndarray): Bulk velocity of the box (km/s) (shape=(3,))
|
||||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||||
- omega_m (float): Matter density parameter Om
|
||||
- h (float): Hubble constant H0 = 100 h km/s/Mpc
|
||||
- L (float): Comoving box size (Mpc/h)
|
||||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||||
- interp_order (int): Order of interpolation from grid points to the line of sight
|
||||
- bias_epsilon (float): Small number to add to 1 + delta to prevent 0^#
|
||||
- cz_obs (np.ndarray): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||||
- MB_pos (np.ndarray): Comoving coordinates of integration points to use in likelihood (Mpc/h).
|
||||
The shape is (3, Nt, Nsig)
|
||||
|
||||
Returns:
|
||||
- loglike (float): The log-likelihood of the data
|
||||
"""
|
||||
|
||||
# Comoving radii of integration points (Mpc/h)
|
||||
r = jnp.sqrt(jnp.sum(MB_pos ** 2, axis=0))
|
||||
|
||||
# p_r = r^2 n(r) N(mutrue; muTFR, sigmaTFR)
|
||||
# Multiply by arbitrary number for numerical stability (cancels in p_r / p_r_norm)
|
||||
number_density = projection.interp_field(
|
||||
dens,
|
||||
MB_pos,
|
||||
L,
|
||||
jnp.array([xmin, xmin, xmin]),
|
||||
interp_order,
|
||||
use_jitted=True,
|
||||
)
|
||||
number_density = jax.nn.relu(1. + number_density)
|
||||
number_density = jnp.power(number_density + bias_epsilon, alpha)
|
||||
zcosmo = utils.z_cos(r, omega_m)
|
||||
mutrue = 5 * jnp.log10((1 + zcosmo) * r / h) + 25
|
||||
mutripp = m_true + a_tripp * stretch_true - b_tripp * c_true - M_SN
|
||||
d2 = ((mutrue - mutripp[:,None]) / sigma_SN) ** 2
|
||||
best = jnp.amin(jnp.abs(d2), axis=1)
|
||||
d2 = d2 - jnp.expand_dims(jnp.nanmin(d2, axis=1), axis=1)
|
||||
p_r = r ** 2 * jnp.exp(-0.5 * d2) * number_density
|
||||
p_r_norm = jnp.expand_dims(jnp.trapezoid(p_r, r, axis=1), axis=1)
|
||||
|
||||
# Peculiar velocity term
|
||||
tracer_vel = projection.interp_field(
|
||||
vel,
|
||||
MB_pos,
|
||||
L,
|
||||
jnp.array([xmin, xmin, xmin]),
|
||||
interp_order,
|
||||
use_jitted=True,
|
||||
)
|
||||
tracer_vel = tracer_vel + jnp.squeeze(vbulk)[...,None,None]
|
||||
tracer_vr = projection.project_radial(
|
||||
tracer_vel,
|
||||
MB_pos,
|
||||
jnp.zeros(3,)
|
||||
)
|
||||
cz_pred = ((1 + zcosmo) * (1 + tracer_vr / utils.speed_of_light) - 1) * utils.speed_of_light
|
||||
d2 = ((cz_pred - jnp.expand_dims(cz_obs, axis=1)) / sigma_v)**2
|
||||
scale = jnp.nanmin(d2, axis=1)
|
||||
d2 = d2 - jnp.expand_dims(scale, axis=1)
|
||||
|
||||
# Integrate to get likelihood
|
||||
p_cz = jnp.trapezoid(jnp.exp(-0.5 * d2) * p_r / p_r_norm, r, axis=1)
|
||||
lkl_ind = jnp.log(p_cz) - scale / 2 - 0.5 * jnp.log(2 * np.pi * sigma_v**2)
|
||||
loglike = lkl_ind.sum()
|
||||
|
||||
return loglike
|
||||
|
||||
|
||||
def likelihood_stretch(stretch_true, stretch_obs, sigma_stretch):
|
||||
"""
|
||||
Evaluate the terms in the likelihood from stretch
|
||||
|
||||
Args:
|
||||
- stretch_true (np.ndarray): True stretch of the tracers (shape = (Nt,))
|
||||
- stretch_obs (np.ndarray): Observed stretch of the tracers (shape = (Nt,))
|
||||
- sigma_stretch (float): Uncertainty on the stretch measurements
|
||||
|
||||
Returns:
|
||||
- loglike (float): The log-likelihood of the data
|
||||
"""
|
||||
|
||||
Nt = stretch_obs.shape[0]
|
||||
loglike = - (
|
||||
0.5 * jnp.sum((stretch_obs - stretch_true) ** 2 / sigma_stretch ** 2)
|
||||
+ Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_stretch ** 2)
|
||||
)
|
||||
|
||||
return loglike
|
||||
|
||||
|
||||
def likelihood_c(c_true, c_obs, sigma_c):
|
||||
"""
|
||||
Evaluate the terms in the likelihood from colour
|
||||
|
||||
Args:
|
||||
- c_true (np.ndarray): True colours of the tracers (shape = (Nt,))
|
||||
- c_obs (np.ndarray): Observed colours of the tracers (shape = (Nt,))
|
||||
- sigma_c (float): Uncertainty on the colours measurements
|
||||
|
||||
Returns:
|
||||
- loglike (float): The log-likelihood of the data
|
||||
"""
|
||||
|
||||
Nt = c_obs.shape[0]
|
||||
loglike = - (
|
||||
0.5 * jnp.sum((c_obs - c_true) ** 2 / sigma_c ** 2)
|
||||
+ Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_c ** 2)
|
||||
)
|
||||
|
||||
return loglike
|
||||
|
||||
|
||||
def likelihood(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
cz_obs, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos):
|
||||
"""
|
||||
Evaluate the likelihood for SN sample
|
||||
|
||||
Args:
|
||||
- alpha (float): Exponent for bias model
|
||||
|
||||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||||
- m_true (np.ndarray): True apparent magnitudes of the tracers (shape = (Nt,))
|
||||
|
||||
- vbulk (np.ndarray): Bulk velocity of the box (km/s) (shape=(3,))
|
||||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||||
- omega_m (float): Matter density parameter Om
|
||||
- h (float): Hubble constant H0 = 100 h km/s/Mpc
|
||||
- L (float): Comoving box size (Mpc/h)
|
||||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||||
- interp_order (int): Order of interpolation from grid points to the line of sight
|
||||
- bias_epsilon (float): Small number to add to 1 + delta to prevent 0^#
|
||||
- cz_obs (np.ndarray): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||||
- m_obs (np.ndarray): Observed apparent magnitudes of the tracers (shape = (Nt,))
|
||||
|
||||
- sigma_m (float): Uncertainty on the apparent magnitude measurements
|
||||
- sigma_eta (float): Uncertainty on the linewidth measurements
|
||||
- MB_pos (np.ndarray): Comoving coordinates of integration points to use in likelihood (Mpc/h).
|
||||
The shape is (3, Nt, Nsig)
|
||||
|
||||
Returns:
|
||||
- loglike (float): The log-likelihood of the data
|
||||
"""
|
||||
|
||||
|
||||
loglike_vel = likelihood_vel(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
cz_obs, MB_pos)
|
||||
loglike_stretch = likelihood_stretch(stretch_true, stretch_obs, sigma_stretch)
|
||||
loglike_c = likelihood_c(c_true, c_obs, sigma_c)
|
||||
|
||||
loglike = (loglike_vel + loglike_stretch + loglike_c)
|
||||
|
||||
return loglike
|
||||
|
||||
|
||||
def test_likelihood_scan(prior, alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos):
|
||||
"""
|
||||
Plot likelihood as we scan through the paramaters [alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v]
|
||||
to verify that the likelihood shape looks reasonable
|
||||
|
||||
Args:
|
||||
- prior (dict): Upper and lower bounds for a uniform prior for the parameters
|
||||
- alpha (float): Exponent for bias model
|
||||
|
||||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||||
- m_true (np.ndarray): True apparent magnitudes of the tracers (shape = (Nt,))
|
||||
|
||||
- dens (np.ndarray): Over-density field (shape = (N, N, N))
|
||||
- vel (np.ndarray): Velocity field (km/s) (shape = (3, N, N, N))
|
||||
- omega_m (float): Matter density parameter Om
|
||||
- h (float): Hubble constant H0 = 100 h km/s/Mpc
|
||||
- L (float): Comoving box size (Mpc/h)
|
||||
- xmin (float): Coordinate of corner of the box (Mpc/h)
|
||||
- interp_order (int): Order of interpolation from grid points to the line of sight
|
||||
- bias_epsilon (float): Small number to add to 1 + delta to prevent 0^#
|
||||
- cz_obs (np.ndarray): Observed redshifts (km/s) of the tracers (shape = (Nt,))
|
||||
- m_obs (np.ndarray): Observed apparent magnitudes of the tracers (shape = (Nt,))
|
||||
|
||||
- sigma_m (float): Uncertainty on the apparent magnitude measurements
|
||||
- sigma_eta (float): Uncertainty on the apparent linewidth measurements
|
||||
- MB_pos (np.ndarray): Comoving coordinates of integration points to use in likelihood (Mpc/h).
|
||||
The shape is (3, Nt, Nsig)
|
||||
|
||||
"""
|
||||
|
||||
|
||||
pars = [alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v]
|
||||
par_names = ['alpha', 'a_tripp', 'b_tripp', 'M_SN', 'sigma_SN', 'sigma_v']
|
||||
|
||||
orig_ll = - likelihood(*pars, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||||
|
||||
for i, name in enumerate(par_names):
|
||||
|
||||
myprint(f'Scanning {name}')
|
||||
|
||||
if name in prior:
|
||||
x = np.linspace(*prior[name], 20)
|
||||
else:
|
||||
pmin = pars[i] * 0.2
|
||||
pmax = pars[i] * 2.0
|
||||
x = np.linspace(pmin, pmax, 20)
|
||||
|
||||
all_ll = np.empty(x.shape)
|
||||
orig_x = pars[i]
|
||||
for j, xx in enumerate(x):
|
||||
pars[i] = xx
|
||||
all_ll[j] = - likelihood(*pars, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||||
pars[i] = orig_x
|
||||
|
||||
plt.figure()
|
||||
plt.plot(x, all_ll, '.')
|
||||
plt.axvline(orig_x, ls='--', color='k')
|
||||
plt.axhline(orig_ll, ls='--', color='k')
|
||||
plt.xlabel(name)
|
||||
plt.ylabel('Negative log-likelihood')
|
||||
plt.savefig(f'sn_likelihood_scan_{name}.png')
|
||||
fig = plt.gcf()
|
||||
plt.clf()
|
||||
plt.close(fig)
|
||||
|
||||
return
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
myprint('Beginning')
|
||||
|
||||
sigma_m, sigma_stretch, sigma_c, hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma = estimate_data_parameters()
|
||||
|
||||
# Other parameters to use
|
||||
L = 500.0
|
||||
N = 64
|
||||
xmin = -L/2
|
||||
R_lim = L / 2
|
||||
Rmax = 100
|
||||
Nt = 100
|
||||
alpha = 1.4
|
||||
sigma_v = 150
|
||||
interp_order = 1
|
||||
bias_epsilon = 1.e-7
|
||||
Nint_points = 201
|
||||
Nsig = 10
|
||||
frac_sigma_r = 0.07 # WANT A BETTER WAY OF DOING THIS - ESTIMATE THROUGH SIGMAS FROM Tripp formula
|
||||
|
||||
# These values are from Table 6 of Boruah et al. 2020
|
||||
a_tripp = 0.140
|
||||
b_tripp = 2.78
|
||||
M_SN = - 18.558
|
||||
sigma_SN = 0.082
|
||||
|
||||
prior = {
|
||||
'alpha': [0.5, 4.5],
|
||||
'a_tripp': [0.01, 0.2],
|
||||
'b_tripp': [2.5, 4.5],
|
||||
'M_SN': [-19.5, -17.5],
|
||||
'hyper_mean_stretch': [hyper_stretch_mu - hyper_stretch_sigma, hyper_stretch_mu + hyper_stretch_sigma],
|
||||
'hyper_mean_c':[hyper_c_mu - hyper_c_sigma, hyper_c_mu + hyper_c_sigma],
|
||||
'sigma_v': [10, 3000],
|
||||
}
|
||||
|
||||
# Make mock
|
||||
np.random.seed(123)
|
||||
cpar, dens, vel = get_fields(L, N, xmin)
|
||||
RA, Dec, czCMB, m_true, stretch_true, c_true, m_obs, stretch_obs, c_obs, xtrue, vbulk = create_mock(
|
||||
Nt, L, xmin, cpar, dens, vel, Rmax, alpha,
|
||||
a_tripp, b_tripp, M_SN, sigma_SN, sigma_m, sigma_stretch, sigma_c,
|
||||
hyper_stretch_mu, hyper_stretch_sigma, hyper_c_mu, hyper_c_sigma,
|
||||
sigma_v, interp_order=interp_order, bias_epsilon=bias_epsilon)
|
||||
MB_pos = generateMBData(RA, Dec, czCMB, L, N, R_lim, Nsig, Nint_points, sigma_v, frac_sigma_r)
|
||||
|
||||
# Test likelihood
|
||||
loglike = likelihood(alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, cpar.omega_m, cpar.h, L, xmin, interp_order, bias_epsilon,
|
||||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||||
myprint(f'loglike {loglike}')
|
||||
|
||||
# Scan over parameters to make plots verifying behaviour
|
||||
test_likelihood_scan(prior, alpha, a_tripp, b_tripp, M_SN, sigma_SN, sigma_v, m_true, stretch_true, c_true, vbulk,
|
||||
dens, vel, cpar.omega_m, cpar.h, L, xmin, interp_order, bias_epsilon,
|
||||
czCMB, m_obs, stretch_obs, c_obs, sigma_m, sigma_stretch, sigma_c, MB_pos)
|
||||
|
||||
|
||||
return
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
BIN
tests/sn_likelihood_scan_M_SN.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
tests/sn_likelihood_scan_a_tripp.png
Normal file
After Width: | Height: | Size: 19 KiB |
BIN
tests/sn_likelihood_scan_alpha.png
Normal file
After Width: | Height: | Size: 17 KiB |
BIN
tests/sn_likelihood_scan_b_tripp.png
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
tests/sn_likelihood_scan_sigma_SN.png
Normal file
After Width: | Height: | Size: 20 KiB |
BIN
tests/sn_likelihood_scan_sigma_v.png
Normal file
After Width: | Height: | Size: 20 KiB |
|
@ -2,7 +2,6 @@ import aquila_borg as borg
|
|||
import numpy as np
|
||||
from astropy.coordinates import SkyCoord
|
||||
import astropy.units as apu
|
||||
import astropy.constants
|
||||
import pandas as pd
|
||||
import jax.numpy as jnp
|
||||
import jax.scipy.special
|
||||
|
@ -181,7 +180,6 @@ def create_mock(Nt, L, xmin, cpar, dens, vel, Rmax, alpha, mthresh,
|
|||
- a_TFR (float): TFR relation intercept
|
||||
- b_TFR (float): TFR relation slope
|
||||
- sigma_TFR (float): Intrinsic scatter in the TFR
|
||||
- sigma_v (float): Uncertainty on the velocity field (km/s)
|
||||
- sigma_m (float): Uncertainty on the apparent magnitude measurements
|
||||
- sigma_eta (float): Uncertainty on the linewidth measurements
|
||||
- hyper_eta_mu (float): Mean of the Gaussian hyper-prior for the true eta values
|
||||
|
@ -263,8 +261,8 @@ def create_mock(Nt, L, xmin, cpar, dens, vel, Rmax, alpha, mthresh,
|
|||
etaobs = etatrue + sigma_eta * np.random.randn(Nt)
|
||||
|
||||
# Apply apparement magnitude cut
|
||||
# m = mobs <= mthresh
|
||||
m = np.ones(mobs.shape, dtype=bool)
|
||||
m = mobs <= mthresh
|
||||
# m = np.ones(mobs.shape, dtype=bool)
|
||||
mtrue = mtrue[m]
|
||||
etatrue = etatrue[m]
|
||||
mobs = mobs[m]
|
||||
|
@ -519,11 +517,10 @@ def likelihood_m(m_true, m_obs, sigma_m, mthresh):
|
|||
"""
|
||||
|
||||
Nt = m_obs.shape[0]
|
||||
# norm = 2 / (1 + jax.scipy.special.erf((mthresh - m_true) / (jnp.sqrt(2) * sigma_m))) / jnp.sqrt(2 * jnp.pi * sigma_m ** 2)
|
||||
norm = jnp.sqrt(2 * jnp.pi * sigma_m ** 2) * jnp.ones(Nt)
|
||||
norm = jnp.log(2) - jnp.log(jax.scipy.special.erfc(- (mthresh - m_true) / (jnp.sqrt(2) * sigma_m))) - 0.5 * jnp.log(2 * jnp.pi * sigma_m ** 2)
|
||||
loglike = - (
|
||||
0.5 * jnp.sum((m_obs - m_true) ** 2 / sigma_m ** 2)
|
||||
+ jnp.sum(jnp.log(norm))
|
||||
- jnp.sum(norm)
|
||||
+ Nt * 0.5 * jnp.log(2 * jnp.pi * sigma_m ** 2)
|
||||
)
|
||||
|
||||
|
@ -604,7 +601,7 @@ def test_likelihood_scan(prior, alpha, a_TFR, b_TFR, sigma_TFR, sigma_v, m_true,
|
|||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
czCMB, m_obs, eta_obs, sigma_m, sigma_eta, MB_pos, mthresh):
|
||||
"""
|
||||
Plot likelihood as we scan through the paramaters [alpha, a_TFR, b_TFR, sigma_TFR, sigma_v]
|
||||
Plot likelihood as we scan through the paramaters [alpha, a_TFR, b_TFR, sigma_TFR, sigma_v, mthresh]
|
||||
to verify that the likelihood shape looks reasonable
|
||||
|
||||
Args:
|
||||
|
@ -673,6 +670,25 @@ def test_likelihood_scan(prior, alpha, a_TFR, b_TFR, sigma_TFR, sigma_v, m_true,
|
|||
fig = plt.gcf()
|
||||
plt.clf()
|
||||
plt.close(fig)
|
||||
|
||||
# Now check the effect of varying mthresh on the likelihood
|
||||
myprint(f'Scanning mthresh')
|
||||
x = np.linspace(mthresh - 0.5, mthresh + 0.5, 20)
|
||||
all_ll = np.empty(x.shape)
|
||||
for j, xx in enumerate(x):
|
||||
all_ll[j] = - likelihood(*pars, m_true, eta_true, vbulk,
|
||||
dens, vel, omega_m, h, L, xmin, interp_order, bias_epsilon,
|
||||
czCMB, m_obs, eta_obs, sigma_m, sigma_eta, MB_pos, xx)
|
||||
plt.figure()
|
||||
plt.plot(x, all_ll, '.')
|
||||
plt.axvline(mthresh, ls='--', color='k')
|
||||
plt.axhline(orig_ll, ls='--', color='k')
|
||||
plt.xlabel('mthresh')
|
||||
plt.ylabel('Negative log-likelihood')
|
||||
plt.savefig(f'likelihood_scan_mthresh.png')
|
||||
fig = plt.gcf()
|
||||
plt.clf()
|
||||
plt.close(fig)
|
||||
|
||||
return
|
||||
|
||||
|
@ -966,7 +982,6 @@ if __name__ == "__main__":
|
|||
"""
|
||||
TO DO
|
||||
|
||||
- Reinsert magnitude cut
|
||||
- Deal with case where sigma_eta and sigma_m could be floats vs arrays
|
||||
|
||||
"""
|
BIN
tests/trace.png
Before Width: | Height: | Size: 359 KiB After Width: | Height: | Size: 387 KiB |
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 43 KiB After Width: | Height: | Size: 46 KiB |