Add VELMASS analysis scripts
This commit is contained in:
parent
6cde261fcf
commit
7ce772730a
8 changed files with 695 additions and 293 deletions
|
@ -30,7 +30,13 @@
|
|||
" try:\n",
|
||||
" yield\n",
|
||||
" finally:\n",
|
||||
" sys.stdout = old_stdout"
|
||||
" sys.stdout = old_stdout\n",
|
||||
" \n",
|
||||
"from analysis import (\n",
|
||||
" get_mcmc_steps, load_param_samples, get_truths,\n",
|
||||
" crop_field, compute_ensemble_mean_field, \n",
|
||||
" get_mock_field, get_spectra, get_both_fields,\n",
|
||||
" get_likelihood_values)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -41,290 +47,7 @@
|
|||
"tags": []
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def get_mcmc_steps(dirname, nframe, iter_max, iter_min=0):\n",
|
||||
" \"\"\"\n",
|
||||
" Obtain evenly-spaced sample of MCMC steps to make movie from\n",
|
||||
" \"\"\"\n",
|
||||
" all_mcmc = glob.glob(dirname + '/mcmc_*.h5')\n",
|
||||
" x = [m[len(dirname + '/mcmc_'):-3] for m in all_mcmc]\n",
|
||||
" all_mcmc = np.sort([int(m[len(dirname + '/mcmc_'):-3]) for m in all_mcmc])\n",
|
||||
" if iter_max >= 0:\n",
|
||||
" all_mcmc = all_mcmc[all_mcmc <= iter_max]\n",
|
||||
" all_mcmc = all_mcmc[all_mcmc >= iter_min]\n",
|
||||
" if nframe > 0:\n",
|
||||
" max_out = max(all_mcmc)\n",
|
||||
" min_out = min(all_mcmc)\n",
|
||||
" step = max(int((max_out - min_out+1) / nframe), 1)\n",
|
||||
" all_mcmc = all_mcmc[::step]\n",
|
||||
" if max_out not in all_mcmc:\n",
|
||||
" all_mcmc = np.concatenate([all_mcmc, [max_out]])\n",
|
||||
" return all_mcmc\n",
|
||||
"\n",
|
||||
"def load_param_samples(ini_name, dirname, nframe, iter_max, iter_min):\n",
|
||||
" \n",
|
||||
" config = configparser.ConfigParser()\n",
|
||||
" config.read(ini_name)\n",
|
||||
" to_sample = []\n",
|
||||
" for k,v in config['block_loop'].items():\n",
|
||||
" if v.strip() == 'false':\n",
|
||||
" i = k.index('_sampler')\n",
|
||||
" if k[:i] not in ['hades', 'bias', 'nmean']:\n",
|
||||
" to_sample.append(k[:i])\n",
|
||||
" \n",
|
||||
" print(\"TO SAMPLE\", to_sample)\n",
|
||||
" nsamp = int(config['run']['nsamp'])\n",
|
||||
" new_to_sample = []\n",
|
||||
" for s in to_sample:\n",
|
||||
" if s in ['omega_m', 'sigma8', 'sig_v']:\n",
|
||||
" new_to_sample.append(s)\n",
|
||||
" elif s == 'bulk_flow':\n",
|
||||
" for d in ['_x', '_y', '_z']:\n",
|
||||
" new_to_sample.append(f'{s}{d}')\n",
|
||||
" else:\n",
|
||||
" for i in range(nsamp):\n",
|
||||
" new_to_sample.append(f'{s}{i}')\n",
|
||||
" \n",
|
||||
" # This is desired list to sample\n",
|
||||
" to_sample = new_to_sample\n",
|
||||
" \n",
|
||||
" # Which steps to use\n",
|
||||
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
|
||||
" \n",
|
||||
" sampler = config['sampling']['algorithm'].lower()\n",
|
||||
" samples = np.empty((len(to_sample),len(all_mcmc)))\n",
|
||||
" \n",
|
||||
" print('MY SAMPLER IS', sampler)\n",
|
||||
" \n",
|
||||
" if sampler == 'slice': \n",
|
||||
"\n",
|
||||
" for i in tqdm(range(len(all_mcmc))):\n",
|
||||
" with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:\n",
|
||||
" for j, s in enumerate(to_sample):\n",
|
||||
" if 'model_params_' + s in f['scalars'].keys():\n",
|
||||
" samples[j,i] = f['scalars/model_params_' + s][:][0]\n",
|
||||
" elif 'model_params_cosmology.' + s in f['scalars'].keys():\n",
|
||||
" samples[j,i] = f['scalars/model_params_cosmology.' + s][:][0]\n",
|
||||
" elif s == 'sig_v':\n",
|
||||
" samples[j,i] = float(config['model'][s])\n",
|
||||
" elif s.startswith('bulk_flow'):\n",
|
||||
" if s[-1] == 'x':\n",
|
||||
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[0]\n",
|
||||
" elif s[-1] == 'y':\n",
|
||||
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[1]\n",
|
||||
" elif s[-1] == 'z':\n",
|
||||
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[2]\n",
|
||||
" else:\n",
|
||||
" raise NotImplementedError\n",
|
||||
" else:\n",
|
||||
" if s in config[f'cosmology'].keys():\n",
|
||||
" samples[j,i] = float(config['cosmology'][s])\n",
|
||||
" else:\n",
|
||||
" print(\"NOT THERE\")\n",
|
||||
" samples[j,i] = float(config[f'sample_{s[-1]}'][s[:-1]]) \n",
|
||||
" \n",
|
||||
" elif sampler in ['hmc', 'mvslice', 'transformedblackjax', 'blackjax']:\n",
|
||||
" \n",
|
||||
" if sampler in ['hmc', 'transformedblackjax']:\n",
|
||||
" key_name = 'attributes'\n",
|
||||
" key_name = 'model_params'\n",
|
||||
" elif sampler in ['mvslice', 'blackjax']:\n",
|
||||
" key_name = 'model_paramsattributes'\n",
|
||||
" \n",
|
||||
" # Get order in which model parameters are stored\n",
|
||||
" if os.path.isfile(f'{dirname}/model_params.txt'):\n",
|
||||
" with open(f'{dirname}/model_params.txt', 'r') as file:\n",
|
||||
" model_params = [line.strip() for line in file]\n",
|
||||
" else:\n",
|
||||
" model_params = []\n",
|
||||
" \n",
|
||||
" print(model_params)\n",
|
||||
" \n",
|
||||
" for i in tqdm(range(len(all_mcmc))):\n",
|
||||
" with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:\n",
|
||||
" if key_name in f['scalars'].keys():\n",
|
||||
" data = f[f'scalars/{key_name}'][:]\n",
|
||||
" else:\n",
|
||||
" data = None\n",
|
||||
" for j, s in enumerate(to_sample):\n",
|
||||
" if s in model_params:\n",
|
||||
" samples[j,i] = data[model_params.index(s)]\n",
|
||||
" elif 'model_params_cosmology.' + s in f['scalars'].keys():\n",
|
||||
" samples[j,i] = f['scalars/model_params_cosmology.' + s][:][0]\n",
|
||||
" elif s == 'sig_v':\n",
|
||||
" samples[j,i] = float(config['model'][s])\n",
|
||||
" elif s in config[f'cosmology'].keys():\n",
|
||||
" samples[j,i] = float(config['cosmology'][s])\n",
|
||||
" elif s.startswith('bulk_flow'):\n",
|
||||
" idx = {'x':0, 'y':1, 'z':2}\n",
|
||||
" idx = idx[s[-1]]\n",
|
||||
" samples[j,i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[idx]\n",
|
||||
" else:\n",
|
||||
" samples[j,i] = float(config[f'sample_{s[-1]}'][s[:-1]]) \n",
|
||||
" else:\n",
|
||||
" raise NotImplementedError\n",
|
||||
"\n",
|
||||
" return to_sample, all_mcmc, samples\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_truths(ini_name, to_sample):\n",
|
||||
" \n",
|
||||
" config = configparser.ConfigParser()\n",
|
||||
" config.read(ini_name)\n",
|
||||
" \n",
|
||||
" truths = [None] * len(to_sample)\n",
|
||||
" \n",
|
||||
" for i, s in enumerate(to_sample):\n",
|
||||
" if s in config[f'cosmology'].keys():\n",
|
||||
" truths[i] = float(config['cosmology'][s])\n",
|
||||
" elif s == 'sig_v':\n",
|
||||
" truths[i] = float(config['model'][s])\n",
|
||||
" elif s.startswith('bulk_flow'):\n",
|
||||
" idx = {'x':0, 'y':1, 'z':2}\n",
|
||||
" idx = idx[s[-1]]\n",
|
||||
" truths[i] = np.array(ast.literal_eval(config['model']['bulk_flow']))[idx]\n",
|
||||
" else:\n",
|
||||
" truths[i] = float(config[f'sample_{s[-1]}'][s[:-1]]) \n",
|
||||
" \n",
|
||||
" return truths\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def crop_field(ini_name, field):\n",
|
||||
" \n",
|
||||
" config = configparser.ConfigParser()\n",
|
||||
" config.read(ini_name)\n",
|
||||
" Rmax = float(config['mock']['R_max'])\n",
|
||||
" xmin = float(config['system']['corner0'])\n",
|
||||
" L = float(config['system']['L0'])\n",
|
||||
" N = int(config['system']['N0'])\n",
|
||||
" x = np.linspace(xmin, xmin+L, N)\n",
|
||||
" m = np.abs(x) < Rmax\n",
|
||||
" L = x[m].max() - x[m].min()\n",
|
||||
" \n",
|
||||
" return field[m][:, m][:, :, m], L\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def compute_ensemble_mean_field(ini_name, dirname, nframe, iter_max, iter_min, cut_field=True):\n",
|
||||
" \"\"\"\n",
|
||||
" Compute the mean and std deviation of the inferred density field\n",
|
||||
" \"\"\"\n",
|
||||
"\n",
|
||||
" print('Computing ensemble mean field')\n",
|
||||
" \n",
|
||||
" # Which steps to use\n",
|
||||
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
|
||||
"\n",
|
||||
" #COMPUTE THE MEAN-DENSITY FIELD\n",
|
||||
" for i in tqdm(range(len(all_mcmc))):\n",
|
||||
" idx = all_mcmc[i]\n",
|
||||
" with h5.File(dirname + \"/mcmc_%d.h5\" % idx,'r') as mcmc_file:\n",
|
||||
" temp_field = np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)\n",
|
||||
" if i == 0:\n",
|
||||
" mean_field = np.array(np.full(temp_field.shape,0),dtype=np.float64)\n",
|
||||
" std_field = np.array(np.full(temp_field.shape,0),dtype=np.float64)\n",
|
||||
" mean_field += temp_field\n",
|
||||
" std_field += temp_field*temp_field\n",
|
||||
" mean_field = mean_field/np.float64(len(all_mcmc))\n",
|
||||
" std_field = std_field/np.float64(len(all_mcmc)) # < delta^2 >\n",
|
||||
" std_field = np.sqrt(std_field - mean_field **2) # < delta^2 > - < delta >^2\n",
|
||||
" \n",
|
||||
" # Cut the density field if needed\n",
|
||||
" if cut_field:\n",
|
||||
" mean_field, _ = crop_field(ini_name, mean_field)\n",
|
||||
" std_field, _ = crop_field(ini_name, std_field)\n",
|
||||
" \n",
|
||||
" return mean_field, std_field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_mock_field(ini_name, dirname, which_field='delta', cut_field=True):\n",
|
||||
" with h5.File(f'{dirname}/mock_data.h5', 'r') as f:\n",
|
||||
" if which_field == 'delta':\n",
|
||||
" dens = f['scalars/BORG_final_density'][:]\n",
|
||||
" elif which_field == 'ics':\n",
|
||||
" dens = f['scalars/s_field'][:]\n",
|
||||
" if cut_field:\n",
|
||||
" dens, L = crop_field(ini_name, dens)\n",
|
||||
" else:\n",
|
||||
" config = configparser.ConfigParser()\n",
|
||||
" config.read(ini_name)\n",
|
||||
" L = float(config['system']['L0'])\n",
|
||||
" return dens, L\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_spectra(ini_file, dirname, nframe, iter_max, iter_min, which_field='delta', cut_field=True):\n",
|
||||
" \n",
|
||||
" # Which steps to use\n",
|
||||
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
|
||||
" \n",
|
||||
" if which_field == 'delta':\n",
|
||||
" MAS = \"CIC\"\n",
|
||||
" elif which_field == 'ics':\n",
|
||||
" MAS = None\n",
|
||||
" else:\n",
|
||||
" raise NotImplementedError\n",
|
||||
" \n",
|
||||
" # Compute original power spectrum\n",
|
||||
" delta1, boxsize = get_mock_field(ini_name, dirname, which_field=which_field, cut_field=cut_field)\n",
|
||||
" print(\"BOXSIZE\", boxsize)\n",
|
||||
" Pk = PKL.Pk(delta1.astype(np.float32), boxsize, axis=0, MAS=MAS, threads=1, verbose=True)\n",
|
||||
" k = Pk.k3D\n",
|
||||
" Pk_true = Pk.Pk[:,0]\n",
|
||||
" \n",
|
||||
" # Get other spectra\n",
|
||||
" all_pk = np.zeros((len(all_mcmc), len(k)))\n",
|
||||
" all_r = np.zeros((len(all_mcmc), len(k)))\n",
|
||||
" for i in tqdm(range(len(all_mcmc))):\n",
|
||||
" idx = all_mcmc[i]\n",
|
||||
" with h5.File(dirname + \"/mcmc_%d.h5\" % idx,'r') as mcmc_file:\n",
|
||||
" if which_field == 'delta':\n",
|
||||
" delta2= np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)\n",
|
||||
" elif which_field == 'ics':\n",
|
||||
" delta2 = np.array(mcmc_file['scalars/s_field'][...],dtype=np.float64)\n",
|
||||
" else:\n",
|
||||
" raise NotImplementedError\n",
|
||||
" if cut_field:\n",
|
||||
" delta2, _ = crop_field(ini_name, delta2)\n",
|
||||
" with suppress_stdout():\n",
|
||||
" Pk = PKL.XPk([delta1.astype(np.float32),delta2.astype(np.float32)], boxsize, axis=0, MAS=[MAS, MAS], threads=1)\n",
|
||||
" all_pk[i,:] = Pk.Pk[:,0,1] #monopole of field 2\n",
|
||||
" all_r[i,:] = Pk.XPk[:,0,0] / np.sqrt(Pk.Pk[:,0,1] * Pk.Pk[:,0,0])\n",
|
||||
" \n",
|
||||
" return k, Pk_true, all_pk, all_r\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_both_fields(ini_file, dirname, step, which_field='delta', cut_field=True):\n",
|
||||
" \n",
|
||||
" # Mock\n",
|
||||
" delta1, boxsize = get_mock_field(ini_name, dirname, which_field=which_field, cut_field=cut_field)\n",
|
||||
" \n",
|
||||
" # Step\n",
|
||||
" with h5.File(dirname + \"/mcmc_%d.h5\" % step,'r') as mcmc_file:\n",
|
||||
" if which_field == 'delta':\n",
|
||||
" delta2= np.array(mcmc_file['scalars/BORG_final_density'][...],dtype=np.float64)\n",
|
||||
" elif which_field == 'ics':\n",
|
||||
" delta2 = np.array(mcmc_file['scalars/s_field'][...],dtype=np.float64)\n",
|
||||
" else:\n",
|
||||
" raise NotImplementedError\n",
|
||||
" if cut_field:\n",
|
||||
" delta2, _ = crop_field(ini_name, delta2)\n",
|
||||
" \n",
|
||||
" return delta1, delta2\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_likelihood_values(dirname, nframe, iter_max, iter_min):\n",
|
||||
" \n",
|
||||
" all_mcmc = get_mcmc_steps(dirname, nframe, iter_max, iter_min=iter_min)\n",
|
||||
" \n",
|
||||
" all_logL = np.zeros(len(all_mcmc))\n",
|
||||
" all_logprior = np.zeros(len(all_mcmc))\n",
|
||||
" for i in tqdm(range(len(all_mcmc))):\n",
|
||||
" with h5.File(f'{dirname}/mcmc_{all_mcmc[i]}.h5', 'r') as f:\n",
|
||||
" s_hat = f['scalars/s_hat_field'][:]\n",
|
||||
" all_logL[i] = f['scalars/hmc_Elh'][:]\n",
|
||||
" all_logprior[i] = f['scalars/hmc_Eprior'][:]\n",
|
||||
" \n",
|
||||
" return all_logL, all_logprior"
|
||||
]
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue