Add VELMASS mock maker
|
@ -17,7 +17,7 @@ pip install -U "jax[cuda12]=0.4.31”
|
||||||
pip install blackjax
|
pip install blackjax
|
||||||
|
|
||||||
cd /home/bartlett/borg
|
cd /home/bartlett/borg
|
||||||
bash build.sh --c-compiler $(which x86_64-conda_cos6-linux-gnu-gcc) --cxx-compiler $(which x86_64-conda_cos6-linux-gnu-g++) --python=$(which python3) —-install-system-python --hades-python --use-system-hdf5 --build-dir /data101/bartlett/build_borg/
|
bash build.sh --c-compiler $(which x86_64-conda_cos6-linux-gnu-gcc) --cxx-compiler $(which x86_64-conda_cos6-linux-gnu-g++) --python=$(which python3) --install-system-python --hades-python --use-system-hdf5 --build-dir /data101/bartlett/build_borg/
|
||||||
cd /data101/bartlett/build_borg/
|
cd /data101/bartlett/build_borg/
|
||||||
make -j 32
|
make -j 32
|
||||||
make python-install
|
make python-install
|
||||||
|
|
|
@ -245,7 +245,8 @@ class VelocityBORGLikelihood(borg.likelihood.BaseLikelihood):
|
||||||
if self.run_type == 'data':
|
if self.run_type == 'data':
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
elif self.run_type == 'velmass':
|
elif self.run_type == 'velmass':
|
||||||
raise NotImplementedError
|
self.coord_true, self.coord_meas, self.sig_mu, self.vr_true, self.cz_obs = \
|
||||||
|
mock_maker.velmass_mock(self.ini_file, seed=self.mock_seed)
|
||||||
elif self.run_type == 'mock':
|
elif self.run_type == 'mock':
|
||||||
self.coord_true, self.coord_meas, self.sig_mu, self.vr_true, self.cz_obs = \
|
self.coord_true, self.coord_meas, self.sig_mu, self.vr_true, self.cz_obs = \
|
||||||
mock_maker.borg_mock(s_hat, state, self.fwd, self.fwd_vel, self.ini_file, seed=self.mock_seed)
|
mock_maker.borg_mock(s_hat, state, self.fwd, self.fwd_vel, self.ini_file, seed=self.mock_seed)
|
||||||
|
@ -357,7 +358,7 @@ class VelocityBORGLikelihood(borg.likelihood.BaseLikelihood):
|
||||||
# self.lkl_ind[i] = temp_lkl_ind.copy()
|
# self.lkl_ind[i] = temp_lkl_ind.copy()
|
||||||
|
|
||||||
# Add in bulk flow prior
|
# Add in bulk flow prior
|
||||||
lkl += jnp.sum(0.5 * jnp.log(2 * np.pi) + jnp.log(self.sigma_bulk) + self.bulk_flow ** 2 / 2. / self.sigma_bulk ** 2)
|
lkl += jnp.sum(0.5 * jnp.log(2 * np.pi) + jnp.log(self.sigma_bulk / jnp.sqrt(3)) + self.bulk_flow ** 2 / 2. / (self.sigma_bulk / jnp.sqrt(3)) ** 2)
|
||||||
|
|
||||||
# lkl = jnp.clip(lkl, -self.bignum, self.bignum)
|
# lkl = jnp.clip(lkl, -self.bignum, self.bignum)
|
||||||
lkl = lax.cond(
|
lkl = lax.cond(
|
||||||
|
|
|
@ -6,7 +6,7 @@ import configparser
|
||||||
import ast
|
import ast
|
||||||
|
|
||||||
import borg_velocity.utils as utils
|
import borg_velocity.utils as utils
|
||||||
from borg_velocity.utils import myprint
|
from borg_velocity.utils import myprint, parse_file_to_dict
|
||||||
import borg_velocity.forwards as forwards
|
import borg_velocity.forwards as forwards
|
||||||
import borg_velocity.poisson_process as poisson_process
|
import borg_velocity.poisson_process as poisson_process
|
||||||
import borg_velocity.projection as projection
|
import borg_velocity.projection as projection
|
||||||
|
@ -47,6 +47,8 @@ def radially_scatter(xtrue, frac_sig_x):
|
||||||
|
|
||||||
def borg_mock(s_hat, state, fwd_model, fwd_vel, ini_file, seed=None):
|
def borg_mock(s_hat, state, fwd_model, fwd_vel, ini_file, seed=None):
|
||||||
|
|
||||||
|
myprint('Making mock from BORG')
|
||||||
|
|
||||||
config = configparser.ConfigParser()
|
config = configparser.ConfigParser()
|
||||||
config.read(ini_file)
|
config.read(ini_file)
|
||||||
|
|
||||||
|
@ -89,7 +91,7 @@ def borg_mock(s_hat, state, fwd_model, fwd_vel, ini_file, seed=None):
|
||||||
|
|
||||||
frac_sig_x = float(config[f'sample_{i}']['frac_sig_rhMpc'])
|
frac_sig_x = float(config[f'sample_{i}']['frac_sig_rhMpc'])
|
||||||
alpha = float(config[f'sample_{i}']['alpha'])
|
alpha = float(config[f'sample_{i}']['alpha'])
|
||||||
lam = int(config[f'sample_{i}']['lam'])
|
lam = float(config[f'sample_{i}']['lam'])
|
||||||
Nt = int(config[f'sample_{i}']['Nt'])
|
Nt = int(config[f'sample_{i}']['Nt'])
|
||||||
phi = (1. + output_density + bias_epsilon) ** alpha
|
phi = (1. + output_density + bias_epsilon) ** alpha
|
||||||
|
|
||||||
|
@ -186,3 +188,153 @@ def borg_mock(s_hat, state, fwd_model, fwd_vel, ini_file, seed=None):
|
||||||
coord_meas[i] = coord_meas[i] * muA
|
coord_meas[i] = coord_meas[i] * muA
|
||||||
|
|
||||||
return coord_true, coord_meas, sig_mu, vr_true, cz_obs
|
return coord_true, coord_meas, sig_mu, vr_true, cz_obs
|
||||||
|
|
||||||
|
|
||||||
|
def velmass_mock(ini_file, seed=None):
|
||||||
|
|
||||||
|
myprint('Making mock from VELMASS')
|
||||||
|
|
||||||
|
if seed is not None:
|
||||||
|
np.random.seed(seed)
|
||||||
|
|
||||||
|
config = configparser.ConfigParser()
|
||||||
|
config.read(ini_file)
|
||||||
|
|
||||||
|
dirname = config['mock']['velmass_dirname']
|
||||||
|
|
||||||
|
with open(dirname + "/halos_0.0.ascii", "rb") as f:
|
||||||
|
for _ in range(30):
|
||||||
|
r = str(f.readline())
|
||||||
|
if "Units" in r:
|
||||||
|
myprint(r)
|
||||||
|
|
||||||
|
# Get box size
|
||||||
|
with open(dirname + '/auto-rockstar.cfg') as f:
|
||||||
|
data = [r for r in f]
|
||||||
|
Lbox = [r for r in data if r.startswith('BOX_SIZE')][0].strip()
|
||||||
|
Lbox = float(Lbox.split('=')[1])
|
||||||
|
origin = np.array([Lbox/2, Lbox/2, Lbox/2])
|
||||||
|
omega_m = [r for r in data if r.startswith('Om')][0].strip()
|
||||||
|
omega_m = float(omega_m.split('=')[1])
|
||||||
|
|
||||||
|
halo_file = dirname + '/out.npy'
|
||||||
|
halos = np.load(halo_file)
|
||||||
|
|
||||||
|
# Cut by mass
|
||||||
|
Mmin = float(config['mock']['velmass_Mmin'])
|
||||||
|
halos = halos[halos['Mvir'] > Mmin]
|
||||||
|
|
||||||
|
# Load positions
|
||||||
|
xtrue = halos['X'] - origin[0] # Mpc / h
|
||||||
|
ytrue = halos['Y'] - origin[1] # Mpc / h
|
||||||
|
ztrue = halos['Z'] - origin[2] # Mpc / h
|
||||||
|
rtrue = np.sqrt(xtrue**2 + ytrue**2 + ztrue**2) # Mpc / h
|
||||||
|
xtrue = np.array([xtrue, ytrue, ztrue]) # shape = (3, nhalos)
|
||||||
|
|
||||||
|
# Load velocities
|
||||||
|
vtrue = np.array([halos['VX'], halos['VY'], halos['VZ']])
|
||||||
|
|
||||||
|
# Get relative probability of each object according to selection function
|
||||||
|
R_max = float(config['mock']['R_max'])
|
||||||
|
|
||||||
|
# Define probability array. This is needed to prevent an object being in two samples
|
||||||
|
prob = np.ones(len(rtrue))
|
||||||
|
|
||||||
|
R_max = float(config['mock']['R_max'])
|
||||||
|
if config['model']['R_lim'] == 'none':
|
||||||
|
R_lim = fwd_model.getOutputBoxModel().L[0]/2
|
||||||
|
else:
|
||||||
|
R_lim = float(config['model']['R_lim'])
|
||||||
|
|
||||||
|
# Sample
|
||||||
|
nsamp = int(config['run']['nsamp'])
|
||||||
|
coord_true = [None] * nsamp
|
||||||
|
coord_meas = [None] * nsamp
|
||||||
|
vr_true = [None] * nsamp
|
||||||
|
sig_mu = [None] * nsamp
|
||||||
|
for i in range(nsamp):
|
||||||
|
|
||||||
|
myprint(f'Making mock for sample {i}')
|
||||||
|
lam = float(config[f'sample_{i}']['lam'])
|
||||||
|
frac_sig_x = float(config[f'sample_{i}']['frac_sig_rhMpc'])
|
||||||
|
Nt = int(config[f'sample_{i}']['Nt'])
|
||||||
|
|
||||||
|
# Radial selection function
|
||||||
|
m = prob != 0 # objects already found
|
||||||
|
prob[m] = np.exp(- lam * rtrue[m] / R_max)
|
||||||
|
prob /= np.sum(prob)
|
||||||
|
|
||||||
|
# Initialize lists to store valid positions and corresponding sig_mu values
|
||||||
|
coord_meas_valid = np.empty((3, Nt))
|
||||||
|
coord_true_valid = np.empty((3, Nt))
|
||||||
|
tracer_vel = np.empty((3, Nt))
|
||||||
|
|
||||||
|
# Counter for accepted positions
|
||||||
|
accepted_count = 0
|
||||||
|
|
||||||
|
# Loop until we have Nt valid positions
|
||||||
|
while accepted_count < Nt:
|
||||||
|
|
||||||
|
ids = np.random.choice(len(rtrue), size=Nt, p=prob, replace=False)
|
||||||
|
|
||||||
|
# Apply radial scattering
|
||||||
|
xmeas, sig_mu[i] = radially_scatter(xtrue[:,ids], frac_sig_x)
|
||||||
|
|
||||||
|
# Compute radial distances of each measured coordinate
|
||||||
|
radial_distances = np.sqrt(np.sum(xmeas ** 2, axis=0))
|
||||||
|
|
||||||
|
# Filter coordinates that meet the R_lim condition
|
||||||
|
valid_indices = radial_distances < R_lim
|
||||||
|
ids = ids[valid_indices]
|
||||||
|
xmeas = xmeas[:,valid_indices]
|
||||||
|
radial_distances = radial_distances[valid_indices]
|
||||||
|
|
||||||
|
# Calculate how many valid positions we need to reach Nt
|
||||||
|
remaining_needed = Nt - accepted_count
|
||||||
|
selected_count = min(len(ids), remaining_needed)
|
||||||
|
ids = ids[:selected_count]
|
||||||
|
|
||||||
|
# Append only the needed number of valid halos
|
||||||
|
coord_meas_valid[:,accepted_count:accepted_count+selected_count] = xmeas[:,:selected_count]
|
||||||
|
coord_true_valid[:,accepted_count:accepted_count+selected_count] = xtrue[:,ids]
|
||||||
|
tracer_vel[:,accepted_count:accepted_count+selected_count] = vtrue[:,ids]
|
||||||
|
|
||||||
|
# Update the accepted count
|
||||||
|
accepted_count += selected_count
|
||||||
|
|
||||||
|
myprint(f'\tMade {accepted_count} of {Nt}')
|
||||||
|
|
||||||
|
# Set up for next iteration
|
||||||
|
prob[ids] = 0
|
||||||
|
prob /= np.sum(prob)
|
||||||
|
|
||||||
|
coord_true[i] = coord_true_valid.copy()
|
||||||
|
coord_meas[i] = coord_meas_valid.copy()
|
||||||
|
|
||||||
|
vr_true[i] = np.squeeze(projection.project_radial(
|
||||||
|
np.expand_dims(tracer_vel, axis=2),
|
||||||
|
np.expand_dims(coord_true[i], axis=2),
|
||||||
|
np.zeros(3,)
|
||||||
|
))
|
||||||
|
|
||||||
|
# Get the correct omega_m
|
||||||
|
config_dict = parse_file_to_dict(f'{dirname}/rockstar.cfg')
|
||||||
|
omega_m = config_dict['Om']
|
||||||
|
|
||||||
|
# Compute observed redshifts (including noise - ACTUALLY NOT YET)
|
||||||
|
sig_v = float(config['model']['sig_v'])
|
||||||
|
cz_obs = [None] * nsamp
|
||||||
|
for i in range(nsamp):
|
||||||
|
rtrue = np.sqrt(np.sum(coord_true[i] ** 2, axis=0))
|
||||||
|
zco = utils.z_cos(rtrue, omega_m)
|
||||||
|
cz_obs[i] = utils.speed_of_light * zco + (1 + zco) * vr_true[i]
|
||||||
|
# cz_obs[i] += np.random.normal(size=cz_obs[i].shape) * sig_v # CHECK THIS LINE!!!!!
|
||||||
|
|
||||||
|
# Add observational systematic due to incorrect distance estimate
|
||||||
|
# \mu -> \mu + 5 log10(A), or equivalently d -> A d
|
||||||
|
for i in range(nsamp):
|
||||||
|
muA = float(config[f'sample_{i}']['muA'])
|
||||||
|
coord_meas[i] = coord_meas[i] * muA
|
||||||
|
|
||||||
|
return coord_true, coord_meas, sig_mu, vr_true, cz_obs
|
||||||
|
|
|
@ -246,8 +246,8 @@ class MVSliceBiasSampler(borg.samplers.PyBaseSampler):
|
||||||
self._update_attrs(x)
|
self._update_attrs(x)
|
||||||
return -self.likelihood.logLikelihoodComplex(x_hat, False)
|
return -self.likelihood.logLikelihoodComplex(x_hat, False)
|
||||||
|
|
||||||
self.y[:] = borg.samplers.mv_slice_sampler(
|
self.y[:] = borg.samplers.mpi_mv_slice_sampler(
|
||||||
state, _callback, self.y, self.mvs_state, self.lam
|
state, _callback, self.y, self.mvs_state, self.lam, mpi=None
|
||||||
)
|
)
|
||||||
self._update_attrs(self.y)
|
self._update_attrs(self.y)
|
||||||
|
|
||||||
|
|
|
@ -169,6 +169,31 @@ def get_sigma_bulk(R, cpar):
|
||||||
return sigma
|
return sigma
|
||||||
|
|
||||||
|
|
||||||
|
def parse_file_to_dict(file_path):
|
||||||
|
config_dict = {}
|
||||||
|
with open(file_path, 'r') as file:
|
||||||
|
for line in file:
|
||||||
|
line = line.strip()
|
||||||
|
if not line or line.startswith("#"): # Skip empty lines and comments
|
||||||
|
continue
|
||||||
|
key, value = line.split("=", 1)
|
||||||
|
key = key.strip()
|
||||||
|
value = value.strip()
|
||||||
|
|
||||||
|
# Convert the value to the appropriate type (int, float, or leave as string)
|
||||||
|
if value.isdigit():
|
||||||
|
value = int(value)
|
||||||
|
else:
|
||||||
|
try:
|
||||||
|
value = float(value)
|
||||||
|
except ValueError:
|
||||||
|
pass # Leave it as a string if it cannot be converted
|
||||||
|
|
||||||
|
config_dict[key] = value
|
||||||
|
|
||||||
|
return config_dict
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
cpar = get_cosmopar('../conf/basic_ini.ini')
|
cpar = get_cosmopar('../conf/basic_ini.ini')
|
||||||
|
|
|
@ -75,7 +75,7 @@ bulk_flow = [-200.0, 200.0]
|
||||||
omega_r = 0
|
omega_r = 0
|
||||||
fnl = 0
|
fnl = 0
|
||||||
omega_k = 0
|
omega_k = 0
|
||||||
omega_m = 0.335
|
omega_m = 0.315
|
||||||
omega_b = 0.049
|
omega_b = 0.049
|
||||||
omega_q = 0.685
|
omega_q = 0.685
|
||||||
h100 = 0.68
|
h100 = 0.68
|
||||||
|
|
|
@ -15,24 +15,24 @@ test_mode = true
|
||||||
seed_cpower = true
|
seed_cpower = true
|
||||||
|
|
||||||
[block_loop]
|
[block_loop]
|
||||||
hades_sampler_blocked = false
|
hades_sampler_blocked = true
|
||||||
bias_sampler_blocked= true
|
bias_sampler_blocked= true
|
||||||
nmean_sampler_blocked= true
|
nmean_sampler_blocked= true
|
||||||
sigma8_sampler_blocked = true
|
sigma8_sampler_blocked = true
|
||||||
omega_m_sampler_blocked = true
|
omega_m_sampler_blocked = true
|
||||||
muA_sampler_blocked = false
|
muA_sampler_blocked = true
|
||||||
alpha_sampler_blocked = false
|
alpha_sampler_blocked = true
|
||||||
lam_sampler_blocked = false
|
lam_sampler_blocked = true
|
||||||
sig_v_sampler_blocked = false
|
sig_v_sampler_blocked = false
|
||||||
bulk_flow_sampler_blocked = false
|
bulk_flow_sampler_blocked = true
|
||||||
ares_heat = 1.0
|
ares_heat = 1.0
|
||||||
|
|
||||||
[mcmc]
|
[mcmc]
|
||||||
number_to_generate = 15000
|
number_to_generate = 15000
|
||||||
warmup_model = 500
|
warmup_model = 0
|
||||||
warmup_cosmo = 0
|
warmup_cosmo = 0
|
||||||
random_ic = false
|
random_ic = false
|
||||||
init_random_scaling = 0.1
|
init_random_scaling = 1.0
|
||||||
bignum = 1e20
|
bignum = 1e20
|
||||||
|
|
||||||
[hades]
|
[hades]
|
||||||
|
@ -42,7 +42,7 @@ max_timesteps = 50
|
||||||
mixing = 1
|
mixing = 1
|
||||||
|
|
||||||
[sampling]
|
[sampling]
|
||||||
algorithm = TransformedBlackJax
|
algorithm = mvslice
|
||||||
epsilon = 0.005
|
epsilon = 0.005
|
||||||
Nsteps = 20
|
Nsteps = 20
|
||||||
refresh = 0.1
|
refresh = 0.1
|
||||||
|
@ -51,7 +51,7 @@ warmup_nsteps = 400
|
||||||
warmup_target_acceptance_rate = 0.7
|
warmup_target_acceptance_rate = 0.7
|
||||||
mvlam_mua = 0.01
|
mvlam_mua = 0.01
|
||||||
mvlam_alpha = 0.5
|
mvlam_alpha = 0.5
|
||||||
mvlam_lam = 1.0
|
mvlam_lam = 2.0
|
||||||
mvlam_bulk_flow = 20
|
mvlam_bulk_flow = 20
|
||||||
mvlam_sig_v = 10
|
mvlam_sig_v = 10
|
||||||
|
|
||||||
|
@ -85,7 +85,7 @@ bulk_flow = [-200.0, 200.0]
|
||||||
omega_r = 0
|
omega_r = 0
|
||||||
fnl = 0
|
fnl = 0
|
||||||
omega_k = 0
|
omega_k = 0
|
||||||
omega_m = 0.335
|
omega_m = 0.315
|
||||||
omega_b = 0.049
|
omega_b = 0.049
|
||||||
omega_q = 0.685
|
omega_q = 0.685
|
||||||
h100 = 0.68
|
h100 = 0.68
|
||||||
|
@ -104,6 +104,8 @@ NSAMP = 4
|
||||||
[mock]
|
[mock]
|
||||||
seed = 12345
|
seed = 12345
|
||||||
R_max = 100
|
R_max = 100
|
||||||
|
velmass_dirname = /data54/lavaux/VELMASS/halo_central/halos_new/
|
||||||
|
velmass_Mmin = 3e12
|
||||||
|
|
||||||
[python]
|
[python]
|
||||||
likelihood_path = /home/bartlett/fsigma8/borg_velocity/borg_velocity/likelihood.py
|
likelihood_path = /home/bartlett/fsigma8/borg_velocity/borg_velocity/likelihood.py
|
||||||
|
|
139
conf/velmass_ini.ini
Normal file
|
@ -0,0 +1,139 @@
|
||||||
|
[system]
|
||||||
|
console_output = borg_log
|
||||||
|
VERBOSE_LEVEL = 2
|
||||||
|
N0 = 64
|
||||||
|
N1 = 64
|
||||||
|
N2 = 64
|
||||||
|
L0 = 500.0
|
||||||
|
L1 = 500.0
|
||||||
|
L2 = 500.0
|
||||||
|
corner0 = -250.0
|
||||||
|
corner1 = -250.0
|
||||||
|
corner2 = -250.0
|
||||||
|
NUM_MODES = 100
|
||||||
|
test_mode = true
|
||||||
|
seed_cpower = true
|
||||||
|
|
||||||
|
[block_loop]
|
||||||
|
hades_sampler_blocked = false
|
||||||
|
bias_sampler_blocked= true
|
||||||
|
nmean_sampler_blocked= true
|
||||||
|
sigma8_sampler_blocked = true
|
||||||
|
omega_m_sampler_blocked = true
|
||||||
|
muA_sampler_blocked = true
|
||||||
|
alpha_sampler_blocked = true
|
||||||
|
lam_sampler_blocked = true
|
||||||
|
sig_v_sampler_blocked = true
|
||||||
|
bulk_flow_sampler_blocked = true
|
||||||
|
ares_heat = 1.0
|
||||||
|
|
||||||
|
[mcmc]
|
||||||
|
number_to_generate = 15000
|
||||||
|
warmup_model = 0
|
||||||
|
warmup_cosmo = 0
|
||||||
|
random_ic = false
|
||||||
|
init_random_scaling = 0.1
|
||||||
|
bignum = 1e20
|
||||||
|
|
||||||
|
[hades]
|
||||||
|
algorithm = HMC
|
||||||
|
max_epsilon = 0.01
|
||||||
|
max_timesteps = 50
|
||||||
|
mixing = 1
|
||||||
|
|
||||||
|
[sampling]
|
||||||
|
algorithm = transformedblackjax
|
||||||
|
epsilon = 0.005
|
||||||
|
Nsteps = 20
|
||||||
|
refresh = 0.1
|
||||||
|
rng_seed = 1
|
||||||
|
warmup_nsteps = 400
|
||||||
|
warmup_target_acceptance_rate = 0.7
|
||||||
|
mvlam_mua = 0.01
|
||||||
|
mvlam_alpha = 0.5
|
||||||
|
mvlam_lam = 2.0
|
||||||
|
mvlam_bulk_flow = 20
|
||||||
|
mvlam_sig_v = 10
|
||||||
|
|
||||||
|
[model]
|
||||||
|
gravity = lpt
|
||||||
|
supersampling = 2
|
||||||
|
velocity = CICModel
|
||||||
|
af = 1.0
|
||||||
|
ai = 0.05
|
||||||
|
nsteps = 20
|
||||||
|
smooth_R = 4
|
||||||
|
bias_epsilon = 1e-7
|
||||||
|
interp_order = 1
|
||||||
|
rsmooth = 8.
|
||||||
|
sig_v = 150.
|
||||||
|
R_lim = 220
|
||||||
|
Nint_points = 201
|
||||||
|
Nsig = 10
|
||||||
|
bulk_flow = [0.0, 0.0, 0.0]
|
||||||
|
|
||||||
|
[prior]
|
||||||
|
omega_m = [0.1, 0.8]
|
||||||
|
sigma8 = [0.1, 1.5]
|
||||||
|
muA = [0.5, 1.5]
|
||||||
|
alpha = [0.0, 10.0]
|
||||||
|
lam = [0.0, 10.0]
|
||||||
|
sig_v = [50.0, 200.0]
|
||||||
|
bulk_flow = [-200.0, 200.0]
|
||||||
|
|
||||||
|
[cosmology]
|
||||||
|
omega_r = 0
|
||||||
|
fnl = 0
|
||||||
|
omega_k = 0
|
||||||
|
omega_m = 0.315
|
||||||
|
omega_b = 0.049
|
||||||
|
omega_q = 0.685
|
||||||
|
h100 = 0.68
|
||||||
|
sigma8 = 0.81
|
||||||
|
n_s = 0.97
|
||||||
|
w = -1
|
||||||
|
wprime = 0
|
||||||
|
beta = 1.5
|
||||||
|
z0 = 0
|
||||||
|
|
||||||
|
[run]
|
||||||
|
run_type = velmass
|
||||||
|
NCAT = 0
|
||||||
|
NSAMP = 4
|
||||||
|
|
||||||
|
[mock]
|
||||||
|
seed = 12345
|
||||||
|
R_max = 100
|
||||||
|
velmass_dirname = /data54/lavaux/VELMASS/halo_central/halos_new/
|
||||||
|
velmass_Mmin = 3e12
|
||||||
|
|
||||||
|
[python]
|
||||||
|
likelihood_path = /home/bartlett/fsigma8/borg_velocity/borg_velocity/likelihood.py
|
||||||
|
|
||||||
|
[sample_0]
|
||||||
|
Nt = 345
|
||||||
|
muA = 1.0
|
||||||
|
alpha = 1.4
|
||||||
|
lam = 5
|
||||||
|
frac_sig_rhMpc = 0.07
|
||||||
|
|
||||||
|
[sample_1]
|
||||||
|
Nt = 1682
|
||||||
|
muA = 1.0
|
||||||
|
alpha = 1.4
|
||||||
|
lam = 5
|
||||||
|
frac_sig_rhMpc = 0.07
|
||||||
|
|
||||||
|
[sample_2]
|
||||||
|
Nt = 556
|
||||||
|
muA = 1.0
|
||||||
|
alpha = 1.4
|
||||||
|
lam = 5
|
||||||
|
frac_sig_rhMpc = 0.07
|
||||||
|
|
||||||
|
[sample_3]
|
||||||
|
Nt = 1225
|
||||||
|
muA = 1.0
|
||||||
|
alpha = 1.4
|
||||||
|
lam = 5
|
||||||
|
frac_sig_rhMpc = 0.07
|
Before Width: | Height: | Size: 3.3 MiB After Width: | Height: | Size: 3.4 MiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 172 KiB After Width: | Height: | Size: 171 KiB |
Before Width: | Height: | Size: 100 KiB After Width: | Height: | Size: 100 KiB |
Before Width: | Height: | Size: 84 KiB After Width: | Height: | Size: 85 KiB |
Before Width: | Height: | Size: 80 KiB After Width: | Height: | Size: 74 KiB |
BIN
figs/trace.png
Before Width: | Height: | Size: 334 KiB After Width: | Height: | Size: 19 KiB |
256
notebooks/Velmass_Sampling.ipynb
Normal file
|
@ -16,7 +16,7 @@ set -e
|
||||||
|
|
||||||
# Path variables
|
# Path variables
|
||||||
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
|
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
|
||||||
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/blackjax_model_ic_bf_prior
|
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/velmass_test
|
||||||
|
|
||||||
mkdir -p $RUN_DIR
|
mkdir -p $RUN_DIR
|
||||||
cd $RUN_DIR
|
cd $RUN_DIR
|
||||||
|
@ -29,7 +29,7 @@ BASH_XTRACEFD="3"
|
||||||
set -x
|
set -x
|
||||||
|
|
||||||
# Just ICs
|
# Just ICs
|
||||||
INI_FILE=/home/bartlett/fsigma8/borg_velocity/conf/supranta_ini.ini
|
INI_FILE=/home/bartlett/fsigma8/borg_velocity/conf/velmass_ini.ini
|
||||||
# cp $INI_FILE ini_file.ini
|
cp $INI_FILE ini_file.ini
|
||||||
# $BORG INIT ini_file.ini
|
$BORG INIT ini_file.ini
|
||||||
$BORG RESUME ini_file.ini
|
# $BORG RESUME ini_file.ini
|
|
@ -1,5 +1,5 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
#SBATCH --job-name=blackjax_model_ic_bf_prior
|
#SBATCH --job-name=velmass_ics
|
||||||
#SBATCH --nodes=1
|
#SBATCH --nodes=1
|
||||||
#SBATCH --exclusive
|
#SBATCH --exclusive
|
||||||
#SBATCH --ntasks=40
|
#SBATCH --ntasks=40
|
||||||
|
@ -28,7 +28,7 @@ set -e
|
||||||
|
|
||||||
# Path variables
|
# Path variables
|
||||||
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
|
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
|
||||||
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/blackjax_model_ic_bf_prior
|
RUN_DIR=/data101/bartlett/fsigma8/borg_velocity/velmass_ics
|
||||||
|
|
||||||
mkdir -p $RUN_DIR
|
mkdir -p $RUN_DIR
|
||||||
cd $RUN_DIR
|
cd $RUN_DIR
|
||||||
|
@ -41,10 +41,10 @@ BASH_XTRACEFD="3"
|
||||||
set -x
|
set -x
|
||||||
|
|
||||||
# Run BORG
|
# Run BORG
|
||||||
INI_FILE=/home/bartlett/fsigma8/borg_velocity/conf/supranta_ini.ini
|
INI_FILE=/home/bartlett/fsigma8/borg_velocity/conf/velmass_ini.ini
|
||||||
# cp $INI_FILE ini_file.ini
|
cp $INI_FILE ini_file.ini
|
||||||
# $BORG INIT ini_file.ini
|
$BORG INIT ini_file.ini
|
||||||
$BORG RESUME ini_file.ini
|
# $BORG RESUME ini_file.ini
|
||||||
|
|
||||||
conda deactivate
|
conda deactivate
|
||||||
|
|
||||||
|
|