Compare commits
No commits in common. "9652ac20bce94cfae41ccbb9d073f76e4ebb66e0" and "5bfb2bf4b33f431e6d0730fd61eac34111f6ae23" have entirely different histories.
9652ac20bc
...
5bfb2bf4b3
6 changed files with 1 additions and 517 deletions
|
@ -100,8 +100,6 @@ def get_spectra(ini_name, dirname, mcmc_steps, which_field='BORG_final_density',
|
||||||
MAS = "CIC"
|
MAS = "CIC"
|
||||||
elif which_field == 'ics':
|
elif which_field == 'ics':
|
||||||
MAS = None
|
MAS = None
|
||||||
elif which_field.startwith('BORG_final_velocity'):
|
|
||||||
MAS = "CIC"
|
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
418
example1.py
418
example1.py
|
@ -1,418 +0,0 @@
|
||||||
import aquila_borg as borg
|
|
||||||
import numpy as np
|
|
||||||
import numbers
|
|
||||||
import jaxlib
|
|
||||||
import jax.numpy as jnp
|
|
||||||
import jax
|
|
||||||
import configparser
|
|
||||||
|
|
||||||
# Output stream management
|
|
||||||
cons = borg.console()
|
|
||||||
def myprint(x):
|
|
||||||
if isinstance(x, str):
|
|
||||||
cons.print_std(x)
|
|
||||||
else:
|
|
||||||
cons.print_std(repr(x))
|
|
||||||
|
|
||||||
def get_cosmopar(ini_file):
|
|
||||||
"""
|
|
||||||
Extract cosmological parameters from an ini file
|
|
||||||
|
|
||||||
Args:
|
|
||||||
:ini_file (str): Path to the ini file
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
:cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters
|
|
||||||
"""
|
|
||||||
|
|
||||||
config = configparser.ConfigParser()
|
|
||||||
config.read(ini_file)
|
|
||||||
|
|
||||||
cpar = borg.cosmo.CosmologicalParameters()
|
|
||||||
cpar.default()
|
|
||||||
cpar.fnl = float(config['cosmology']['fnl'])
|
|
||||||
cpar.omega_k = float(config['cosmology']['omega_k'])
|
|
||||||
cpar.omega_m = float(config['cosmology']['omega_m'])
|
|
||||||
cpar.omega_b = float(config['cosmology']['omega_b'])
|
|
||||||
cpar.omega_q = float(config['cosmology']['omega_q'])
|
|
||||||
cpar.h = float(config['cosmology']['h100'])
|
|
||||||
cpar.sigma8 = float(config['cosmology']['sigma8'])
|
|
||||||
cpar.n_s = float(config['cosmology']['n_s'])
|
|
||||||
cpar.w = float(config['cosmology']['w'])
|
|
||||||
cpar.wprime = float(config['cosmology']['wprime'])
|
|
||||||
|
|
||||||
cpar = compute_As(cpar)
|
|
||||||
|
|
||||||
return cpar
|
|
||||||
|
|
||||||
|
|
||||||
def compute_As(cpar):
|
|
||||||
"""
|
|
||||||
Compute As given values of sigma8
|
|
||||||
|
|
||||||
Args:
|
|
||||||
:cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters with wrong As
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
:cpar (borg.cosmo.CosmologicalParameters): Cosmological parameters with updated As
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
# requires BORG-CLASS
|
|
||||||
if not hasattr(borg.cosmo, 'ClassCosmo'):
|
|
||||||
raise ImportError(
|
|
||||||
"BORG-CLASS is required to compute As, but is not installed.")
|
|
||||||
|
|
||||||
sigma8_true = jnp.copy(cpar.sigma8)
|
|
||||||
cpar.sigma8 = 0
|
|
||||||
cpar.A_s = 2.3e-9
|
|
||||||
k_max, k_per_decade = 10, 100
|
|
||||||
extra_class = {}
|
|
||||||
extra_class['YHe'] = '0.24'
|
|
||||||
cosmo = borg.cosmo.ClassCosmo(cpar, k_per_decade, k_max, extra=extra_class)
|
|
||||||
cosmo.computeSigma8()
|
|
||||||
cos = cosmo.getCosmology()
|
|
||||||
cpar.A_s = (sigma8_true/cos['sigma_8'])**2*cpar.A_s
|
|
||||||
cpar.sigma8 = sigma8_true
|
|
||||||
|
|
||||||
print('Updated cosmology:', cpar)
|
|
||||||
|
|
||||||
return cpar
|
|
||||||
|
|
||||||
|
|
||||||
class MyLikelihood(borg.likelihood.BaseLikelihood):
|
|
||||||
"""
|
|
||||||
HADES likelihood class
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, fwd: borg.forward.BaseForwardModel,
|
|
||||||
fwd_vel: borg.forward.BaseForwardModel,
|
|
||||||
ini_fname: str):
|
|
||||||
|
|
||||||
self.fwd = fwd
|
|
||||||
self.fwd_vel = fwd_vel
|
|
||||||
|
|
||||||
# Read the ini file
|
|
||||||
self.ini_fname = ini_fname
|
|
||||||
self.config = configparser.ConfigParser()
|
|
||||||
self.config.read(ini_fname)
|
|
||||||
self.N = [int(self.config['system'][f'N{i}']) for i in range(3)] # Number of grid points per side
|
|
||||||
self.L = [float(self.config['system'][f'L{i}']) for i in range(3)] # Box size lenght Mpc/h
|
|
||||||
|
|
||||||
self.sigma_dens = float(self.config['mock']['sigma_dens']) # Density scatter
|
|
||||||
self.sigma_vel = float(self.config['mock']['sigma_vel']) # Velocity scatter
|
|
||||||
|
|
||||||
myprint(f"Likelihood initialized with {self.N} grid points and box size {self.L} Mpc/h")
|
|
||||||
super().__init__(fwd, self.N, self.L)
|
|
||||||
|
|
||||||
# Set up cosmoligical parameters
|
|
||||||
cpar = get_cosmopar(ini_fname)
|
|
||||||
self.updateCosmology(cpar)
|
|
||||||
|
|
||||||
# Gradient of the likelihood
|
|
||||||
self.grad_like = jax.grad(self.dens2like, argnums=(0, 1))
|
|
||||||
|
|
||||||
def updateCosmology(self, cosmo: borg.cosmo.CosmologicalParameters) -> None:
|
|
||||||
cpar = compute_As(cosmo)
|
|
||||||
self.fwd.setCosmoParams(cpar)
|
|
||||||
|
|
||||||
def updateMetaParameters(self, state: borg.likelihood.MarkovState) -> None:
|
|
||||||
"""
|
|
||||||
Update the meta parameters of the sampler (not sampled) from the MarkovState.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- state (borg.likelihood.MarkovState): The state object to be used in the likelihood.
|
|
||||||
|
|
||||||
"""
|
|
||||||
cosmo = state['cosmology']
|
|
||||||
cpar = compute_As(cosmo)
|
|
||||||
self.fwd.setCosmoParams(cpar)
|
|
||||||
|
|
||||||
def initializeLikelihood(self, state: borg.likelihood.MarkovState) -> None:
|
|
||||||
"""
|
|
||||||
Initialize the likelihood function.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- state (borg.likelihood.MarkovState): The state object to be used in the likelihood.
|
|
||||||
|
|
||||||
"""
|
|
||||||
myprint("Init likelihood")
|
|
||||||
state.newArray3d("BORG_final_density", *self.fwd.getOutputBoxModel().N, True)
|
|
||||||
state.newArray3d("BORG_final_velocity_x", *self.fwd.getOutputBoxModel().N, True)
|
|
||||||
state.newArray3d("BORG_final_velocity_y", *self.fwd.getOutputBoxModel().N, True)
|
|
||||||
state.newArray3d("BORG_final_velocity_z", *self.fwd.getOutputBoxModel().N, True)
|
|
||||||
|
|
||||||
# Could load real data
|
|
||||||
# We'll generate mock data which has its own function
|
|
||||||
|
|
||||||
def generateMockData(self, s_hat:np.ndarray, state: borg.likelihood.MarkovState) -> None:
|
|
||||||
"""
|
|
||||||
Generates mock data by simulating the forward model with the given white noise
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- s_hat (np.ndarray): The input (initial) white noise field.
|
|
||||||
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
|
|
||||||
"""
|
|
||||||
myprint('Making mock from BORG')
|
|
||||||
|
|
||||||
# Get density field from the initial conditions
|
|
||||||
# Could replace with any (better) simulation here
|
|
||||||
# This version is self-consistnet
|
|
||||||
dens = np.zeros(self.fwd.getOutputBoxModel().N)
|
|
||||||
myprint('Running forward model')
|
|
||||||
myprint(self.fwd.getCosmoParams())
|
|
||||||
self.fwd.forwardModel_v2(s_hat)
|
|
||||||
self.fwd.getDensityFinal(dens)
|
|
||||||
state["BORG_final_density"][:] = dens
|
|
||||||
self.true_dens = dens.copy()
|
|
||||||
|
|
||||||
# Get velocity field
|
|
||||||
vel = self.fwd_vel.getVelocityField()
|
|
||||||
self.true_vel = vel.copy()
|
|
||||||
|
|
||||||
# Add some scatter
|
|
||||||
myprint('Adding scatter')
|
|
||||||
self.obs_dens = self.true_dens + np.random.randn(*self.true_dens.shape) * self.sigma_dens
|
|
||||||
self.obs_vel = self.true_vel + np.random.randn(*self.true_vel.shape) * self.sigma_vel
|
|
||||||
|
|
||||||
# Compute the likelihood and print it
|
|
||||||
myprint('From mock')
|
|
||||||
self.saved_s_hat = s_hat.copy()
|
|
||||||
self.logLikelihoodComplex(s_hat, False)
|
|
||||||
self.commitAuxiliaryFields(state)
|
|
||||||
myprint('Done')
|
|
||||||
|
|
||||||
|
|
||||||
def dens2like(self, output_density: np.ndarray, output_velocity: np.ndarray) -> float:
|
|
||||||
"""
|
|
||||||
Compute the likelihood from the density field
|
|
||||||
Args:
|
|
||||||
- output_density (np.ndarray): The density field to be used in the likelihood.
|
|
||||||
- output_velocity (np.ndarray): The velocity field to be used in the likelihood.
|
|
||||||
Returns:
|
|
||||||
- float: The likelihood value.
|
|
||||||
"""
|
|
||||||
# Compute the likelihood from the density field
|
|
||||||
# This is a simple Gaussian likelihood
|
|
||||||
# Could be replaced with any other likelihood
|
|
||||||
diff = output_density - self.obs_dens
|
|
||||||
diff_vel = output_velocity - self.obs_vel
|
|
||||||
like = 0.5 * jnp.sum(diff**2) / (self.sigma_dens**2)
|
|
||||||
like += 0.5 * jnp.sum(diff_vel**2) / (self.sigma_vel**2)
|
|
||||||
|
|
||||||
return like
|
|
||||||
|
|
||||||
|
|
||||||
def logLikelihoodComplex(self, s_hat:np.ndarray, gradientIsNext:bool):
|
|
||||||
|
|
||||||
# myprint('Getting density field now')
|
|
||||||
# Get the density field from the forward model
|
|
||||||
dens = np.zeros(self.fwd.getOutputBoxModel().N)
|
|
||||||
self.fwd.forwardModel_v2(s_hat)
|
|
||||||
self.fwd.getDensityFinal(dens)
|
|
||||||
|
|
||||||
# Get the velocity field from the forward model
|
|
||||||
vel = self.fwd_vel.getVelocityField()
|
|
||||||
|
|
||||||
L = self.dens2like(dens, vel)
|
|
||||||
|
|
||||||
if isinstance(L, numbers.Number) or isinstance(L, jaxlib.xla_extension.ArrayImpl):
|
|
||||||
myprint(f"var(s_hat): {np.var(s_hat)}, Call to logLike: {L}")
|
|
||||||
|
|
||||||
self.delta = dens.copy()
|
|
||||||
self.vel = vel.copy()
|
|
||||||
|
|
||||||
return L
|
|
||||||
|
|
||||||
|
|
||||||
def gradientLikelihoodComplex(self, s_hat:np.ndarray):
|
|
||||||
|
|
||||||
# Run BORG density field
|
|
||||||
output_density = np.zeros(self.N)
|
|
||||||
self.fwd.forwardModel_v2(s_hat)
|
|
||||||
self.fwd.getDensityFinal(output_density)
|
|
||||||
|
|
||||||
# Run BORG velocity field
|
|
||||||
vel = self.fwd_vel.getVelocityField()
|
|
||||||
|
|
||||||
# Compute the gradient of the likelihood
|
|
||||||
# d logL / d dens, d logL / d vel
|
|
||||||
dens_gradient, vel_gradient = self.grad_like(output_density, vel)
|
|
||||||
|
|
||||||
# Now get d logL / d s_hat
|
|
||||||
dens_gradient = np.array(dens_gradient, dtype=np.float64)
|
|
||||||
vel_gradient = np.array(vel_gradient, dtype=np.float64)
|
|
||||||
|
|
||||||
self.fwd_vel.computeAdjointModel(vel_gradient)
|
|
||||||
|
|
||||||
self.fwd.adjointModel_v2(dens_gradient)
|
|
||||||
mygrad_hat = np.zeros(s_hat.shape, dtype=np.complex128)
|
|
||||||
self.fwd.getAdjointModel(mygrad_hat)
|
|
||||||
self.fwd.clearAdjointGradient()
|
|
||||||
|
|
||||||
return mygrad_hat
|
|
||||||
|
|
||||||
def commitAuxiliaryFields(self, state: borg.likelihood.MarkovState) -> None:
|
|
||||||
"""
|
|
||||||
Commits the final density field to the Markov state.
|
|
||||||
Args:
|
|
||||||
- state (borg.state.State): The state object containing the final density field.
|
|
||||||
"""
|
|
||||||
self.updateCosmology(self.fwd.getCosmoParams())
|
|
||||||
self.dens2like(self.delta, self.vel)
|
|
||||||
state["BORG_final_density"][:] = self.delta.copy()
|
|
||||||
state["BORG_final_velocity_x"][:] = self.vel[0].copy()
|
|
||||||
state["BORG_final_velocity_y"][:] = self.vel[1].copy()
|
|
||||||
state["BORG_final_velocity_z"][:] = self.vel[2].copy()
|
|
||||||
|
|
||||||
|
|
||||||
@borg.registerGravityBuilder
|
|
||||||
def build_gravity_model(state: borg.likelihood.MarkovState, box: borg.forward.BoxModel, ini_fname=None) -> borg.forward.BaseForwardModel:
|
|
||||||
"""
|
|
||||||
Builds the gravity model and returns the forward model chain.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
|
|
||||||
- box (borg.forward.BoxModel): The input box model.
|
|
||||||
- ini_file (str, default=None): The location of the ini file. If None, use borg.getIniConfigurationFilename()
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
borg.forward.BaseForwardModel: The forward model.
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
global chain, fwd_vel
|
|
||||||
myprint("Building gravity model")
|
|
||||||
|
|
||||||
if ini_fname is None:
|
|
||||||
ini_fname=borg.getIniConfigurationFilename()
|
|
||||||
config = configparser.ConfigParser()
|
|
||||||
config.read(ini_fname)
|
|
||||||
# READ FROM INI FILE
|
|
||||||
which_model = config['gravity']['which_model']
|
|
||||||
ai = float(config['gravity']['ai']) # Initial scale factor
|
|
||||||
af = float(config['gravity']['af']) # Final scale factor
|
|
||||||
supersampling = int(config['gravity']['supersampling'])
|
|
||||||
forcesampling = int(config['gravity']['forcesampling'])
|
|
||||||
nsteps = int(config['gravity']['nsteps']) # Number of steps in the PM solver
|
|
||||||
|
|
||||||
chain = borg.forward.ChainForwardModel(box)
|
|
||||||
|
|
||||||
# Make sure that the initial conditions are real in position space
|
|
||||||
chain.addModel(borg.forward.models.HermiticEnforcer(box))
|
|
||||||
|
|
||||||
# CLASS transfer function
|
|
||||||
chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
|
|
||||||
transfer_class = borg.forward.model_lib.M_TRANSFER_CLASS(box, opts=dict(a_transfer=1.0))
|
|
||||||
transfer_class.setModelParams({"extra_class_arguments":{'YHe':'0.24'}}) # helps deals with errors with primordial physics in CLASS for weird cosmologies
|
|
||||||
chain @= transfer_class
|
|
||||||
|
|
||||||
# Gravity model
|
|
||||||
if which_model == 'lpt':
|
|
||||||
mod = borg.forward.model_lib.M_LPT_CIC(
|
|
||||||
box,
|
|
||||||
opts=dict(a_initial=af,
|
|
||||||
a_final=af,
|
|
||||||
do_rsd=False,
|
|
||||||
supersampling=supersampling,
|
|
||||||
lightcone=False,
|
|
||||||
part_factor=1.01,))
|
|
||||||
elif which_model == '2lpt':
|
|
||||||
mod = borg.forward.model_lib.M_2LPT_CIC(
|
|
||||||
box,
|
|
||||||
opts=dict(a_initial=af,
|
|
||||||
a_final=af,
|
|
||||||
do_rsd=False,
|
|
||||||
supersampling=supersampling,
|
|
||||||
lightcone=False,
|
|
||||||
part_factor=1.01,))
|
|
||||||
elif which_model == 'pm':
|
|
||||||
mod = borg.forward.model_lib.M_PM_CIC(
|
|
||||||
box,
|
|
||||||
opts=dict(a_initial=af,
|
|
||||||
a_final=af,
|
|
||||||
pm_start_z=1/ai - 1,
|
|
||||||
do_rsd=False,
|
|
||||||
supersampling=supersampling,
|
|
||||||
forcesampling=forcesampling,
|
|
||||||
lightcone=False,
|
|
||||||
part_factor=1.01,
|
|
||||||
pm_nsteps=nsteps, # Number of steps in the PM solver
|
|
||||||
tcola=False
|
|
||||||
))
|
|
||||||
elif which_model == 'cola':
|
|
||||||
mod = borg.forward.model_lib.M_PM_CIC(
|
|
||||||
box,
|
|
||||||
opts=dict(a_initial=af,
|
|
||||||
a_final=af,
|
|
||||||
pm_start_z=1/ai - 1,
|
|
||||||
do_rsd=False,
|
|
||||||
supersampling=supersampling,
|
|
||||||
forcesampling=forcesampling,
|
|
||||||
lightcone=False,
|
|
||||||
part_factor=1.01,
|
|
||||||
pm_nsteps=nsteps, # Number of steps in the PM solver
|
|
||||||
tcola=True
|
|
||||||
))
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown model {which_model}")
|
|
||||||
|
|
||||||
mod.accumulateAdjoint(True)
|
|
||||||
chain @= mod
|
|
||||||
|
|
||||||
# Cosmological parameters
|
|
||||||
cpar = get_cosmopar(borg.getIniConfigurationFilename())
|
|
||||||
print('Setting cosmo params', cpar)
|
|
||||||
chain.setCosmoParams(cpar)
|
|
||||||
|
|
||||||
# Set the forward model for velocities
|
|
||||||
vel_model = config['velocity']['which_model']
|
|
||||||
if vel_model == 'linear':
|
|
||||||
fwd_vel = borg.forward.velocity.LinearModel(box, mod, af)
|
|
||||||
elif vel_model == 'cic':
|
|
||||||
rsmooth = float(config['velocity']['rsmooth'])
|
|
||||||
fwd_vel = borg.forward.velocity.CICModel(box, mod, rsmooth)
|
|
||||||
elif vel_model == 'sic':
|
|
||||||
fwd_vel = borg.forward.velocity.SICModel(box, mod)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown model {vel_model}")
|
|
||||||
|
|
||||||
return chain
|
|
||||||
|
|
||||||
@borg.registerSamplerBuilder
|
|
||||||
def build_sampler(state: borg.likelihood.MarkovState, info: borg.likelihood.LikelihoodInfo, loop: borg.samplers.MainLoop):
|
|
||||||
"""
|
|
||||||
Builds the sampler and returns the main loop.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
|
|
||||||
- info (borg.likelihood.LikelihoodInfo): The likelihood info object to be used in the likelihood.
|
|
||||||
- loop (borg.samplers.MainLoop): The main loop object to be used in the likelihood.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
borg.samplers.MainLoop: The main loop.
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Here you can add cosmology sampling, model parameter sampling, etc.
|
|
||||||
# For now, we'll just sample the initial conditions so don't need to do anything
|
|
||||||
|
|
||||||
return []
|
|
||||||
|
|
||||||
|
|
||||||
@borg.registerLikelihoodBuilder
|
|
||||||
def build_likelihood(state: borg.likelihood.MarkovState, info: borg.likelihood.LikelihoodInfo) -> borg.likelihood.BaseLikelihood:
|
|
||||||
"""
|
|
||||||
Builds the likelihood and returns the likelihood object.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
|
|
||||||
- info (borg.likelihood.LikelihoodInfo): The likelihood info object to be used in the likelihood.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
borg.likelihood.BaseLikelihood: The likelihood object.
|
|
||||||
"""
|
|
||||||
|
|
||||||
myprint("Building likelihood")
|
|
||||||
global likelihood
|
|
||||||
likelihood = MyLikelihood(chain, fwd_vel, borg.getIniConfigurationFilename())
|
|
||||||
return likelihood
|
|
|
@ -1,69 +0,0 @@
|
||||||
[system]
|
|
||||||
console_output = borg_log
|
|
||||||
VERBOSE_LEVEL = 2
|
|
||||||
N0 = 64
|
|
||||||
N1 = 64
|
|
||||||
N2 = 64
|
|
||||||
L0 = 500.0
|
|
||||||
L1 = 500.0
|
|
||||||
L2 = 500.0
|
|
||||||
corner0 = -250.0
|
|
||||||
corner1 = -250.0
|
|
||||||
corner2 = -250.0
|
|
||||||
NUM_MODES = 100
|
|
||||||
test_mode = true
|
|
||||||
seed_cpower = true
|
|
||||||
|
|
||||||
[block_loop]
|
|
||||||
hades_sampler_blocked = false
|
|
||||||
bias_sampler_blocked= true
|
|
||||||
ares_heat = 1.0
|
|
||||||
|
|
||||||
[mcmc]
|
|
||||||
number_to_generate = 1
|
|
||||||
random_ic = false
|
|
||||||
init_random_scaling = 0.1
|
|
||||||
|
|
||||||
[hades]
|
|
||||||
algorithm = HMC
|
|
||||||
max_epsilon = 0.01
|
|
||||||
max_timesteps = 50
|
|
||||||
mixing = 1
|
|
||||||
|
|
||||||
[python]
|
|
||||||
likelihood_path = /home/bartlett/borg_examples/example1.py
|
|
||||||
|
|
||||||
[run]
|
|
||||||
run_type = mock
|
|
||||||
NCAT = 0
|
|
||||||
|
|
||||||
[cosmology]
|
|
||||||
omega_r = 0
|
|
||||||
fnl = 0
|
|
||||||
omega_k = 0
|
|
||||||
omega_m = 0.315
|
|
||||||
omega_b = 0.049
|
|
||||||
omega_q = 0.685
|
|
||||||
h100 = 0.68
|
|
||||||
sigma8 = 0.81
|
|
||||||
n_s = 0.97
|
|
||||||
w = -1
|
|
||||||
wprime = 0
|
|
||||||
beta = 1.5
|
|
||||||
z0 = 0
|
|
||||||
|
|
||||||
[mock]
|
|
||||||
sigma_dens = 1.
|
|
||||||
sigma_vel = 100
|
|
||||||
|
|
||||||
[gravity]
|
|
||||||
which_model = lpt
|
|
||||||
ai = 0.05
|
|
||||||
af = 1.0
|
|
||||||
supersampling = 2
|
|
||||||
forcesampling = 2
|
|
||||||
nsteps = 20
|
|
||||||
|
|
||||||
[velocity]
|
|
||||||
which_model = cic
|
|
||||||
rsmooth = 8.
|
|
|
@ -21,7 +21,7 @@ RUN_DIR=/data101/bartlett/borg_examples/example0
|
||||||
mkdir -p $RUN_DIR
|
mkdir -p $RUN_DIR
|
||||||
cd $RUN_DIR
|
cd $RUN_DIR
|
||||||
|
|
||||||
INI_FILE=/home/bartlett/borg_examples/ini_example0.ini
|
INI_FILE=/home/bartlett/borg_examples/ini_file.ini
|
||||||
|
|
||||||
cp $INI_FILE ini_file.ini
|
cp $INI_FILE ini_file.ini
|
||||||
$BORG INIT ini_file.ini
|
$BORG INIT ini_file.ini
|
|
@ -1,27 +0,0 @@
|
||||||
#!/bin/sh
|
|
||||||
|
|
||||||
# Modules
|
|
||||||
module purge
|
|
||||||
module restore myborg
|
|
||||||
module load cuda/12.6
|
|
||||||
|
|
||||||
# Environment
|
|
||||||
source /home/bartlett/.bashrc
|
|
||||||
source /home/bartlett/anaconda3/etc/profile.d/conda.sh
|
|
||||||
conda deactivate
|
|
||||||
conda activate borg_new
|
|
||||||
|
|
||||||
# Kill job if there are any errors
|
|
||||||
set -e
|
|
||||||
|
|
||||||
# Path variables
|
|
||||||
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
|
|
||||||
RUN_DIR=/data101/bartlett/borg_examples/example1
|
|
||||||
|
|
||||||
mkdir -p $RUN_DIR
|
|
||||||
cd $RUN_DIR
|
|
||||||
|
|
||||||
INI_FILE=/home/bartlett/borg_examples/ini_example1.ini
|
|
||||||
|
|
||||||
cp $INI_FILE ini_file.ini
|
|
||||||
$BORG INIT ini_file.ini
|
|
Loading…
Add table
Reference in a new issue