Example 0

This commit is contained in:
Deaglan Bartlett 2025-04-16 13:20:13 +02:00
parent c6a7055a2f
commit 4baac7619e
4 changed files with 376 additions and 0 deletions

295
example0.py Normal file
View file

@ -0,0 +1,295 @@
import aquila_borg as borg
import numpy as np
import numbers
import jaxlib
import jax.numpy as jnp
import jax
# Output stream management
cons = borg.console()
def myprint(x):
if isinstance(x, str):
cons.print_std(x)
else:
cons.print_std(repr(x))
class MyLikelihood(borg.likelihood.BaseLikelihood):
"""
HADES likelihood class
"""
def __init__(self, fwd: borg.forward.BaseForwardModel):
self.fwd = fwd
self.N = [32, 32, 32] # Number of grid points per side
self.L = [500, 500, 500] # Box size lenght Mpc/h
self.sigma_dens = 0.1 # Density scatter
myprint(f"Likelihood initialized with {self.N} grid points and box size {self.L} Mpc/h")
super().__init__(fwd, self.N, self.L)
# Set up cosmoligical parameters
cpar = borg.cosmo.CosmologicalParameters()
cpar.default()
self.updateCosmology(cpar)
# Gradient of the likelihood
self.grad_like = jax.grad(self.dens2like)
def updateCosmology(self, cosmo: borg.cosmo.CosmologicalParameters) -> None:
self.fwd.setCosmoParams(cosmo)
def updateMetaParameters(self, state: borg.likelihood.MarkovState) -> None:
"""
Update the meta parameters of the sampler (not sampled) from the MarkovState.
Args:
- state (borg.likelihood.MarkovState): The state object to be used in the likelihood.
"""
cpar = state['cosmology']
self.fwd.setCosmoParams(cpar)
def initializeLikelihood(self, state: borg.likelihood.MarkovState) -> None:
"""
Initialize the likelihood function.
Args:
- state (borg.likelihood.MarkovState): The state object to be used in the likelihood.
"""
myprint("Init likelihood")
state.newArray3d("BORG_final_density", *self.fwd.getOutputBoxModel().N, True)
# Could load real data
# We'll generate mock data which has its own function
def generateMockData(self, s_hat:np.ndarray, state: borg.likelihood.MarkovState) -> None:
"""
Generates mock data by simulating the forward model with the given white noise
Args:
- s_hat (np.ndarray): The input (initial) white noise field.
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
"""
myprint('Making mock from BORG')
# Get density field from the initial conditions
# Could replace with any (better) simulation here
# This version is self-consistnet
dens = np.zeros(self.fwd.getOutputBoxModel().N)
myprint('Running forward model')
self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(dens)
state["BORG_final_density"][:] = dens
self.true_dens = dens.copy()
# Add some scatter
myprint('Adding scatter')
self.obs_dens = self.true_dens + np.random.randn(*self.true_dens.shape) * self.sigma_dens
# Compute the likelihood and print it
myprint('From mock')
self.saved_s_hat = s_hat.copy()
self.logLikelihoodComplex(s_hat, False)
def dens2like(self, output_density: np.ndarray):
"""
Compute the likelihood from the density field
Args:
- output_density (np.ndarray): The density field to be used in the likelihood.
Returns:
- float: The likelihood value.
"""
# Compute the likelihood from the density field
# This is a simple Gaussian likelihood
# Could be replaced with any other likelihood
diff = output_density - self.obs_dens
like = 0.5 * jnp.sum(diff**2) / (self.sigma_dens**2)
return like
def logLikelihoodComplex(self, s_hat:np.ndarray, gradientIsNext:bool):
myprint('Getting density field now')
# Get the density field from the forward model
dens = np.zeros(self.fwd.getOutputBoxModel().N)
self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(dens)
L = self.dens2like(dens)
if isinstance(L, numbers.Number) or isinstance(L, jaxlib.xla_extension.ArrayImpl):
myprint(f"var(s_hat): {np.var(s_hat)}, Call to logLike: {L}")
self.delta = dens.copy()
return L
def gradientLikelihoodComplex(self, s_hat:np.ndarray):
# Run BORG density field
output_density = np.zeros(self.N)
self.fwd.forwardModel_v2(s_hat)
self.fwd.getDensityFinal(output_density)
# Compute the gradient of the likelihood
# d logL / d dens
mygradient = self.grad_like(output_density)
# Now get d logL / d s_hat
mygradient = np.array(mygradient, dtype=np.float64)
self.fwd.adjointModel_v2(mygradient)
mygrad_hat = np.zeros(s_hat.shape, dtype=np.complex128)
self.fwd.getAdjointModel(mygrad_hat)
self.fwd.clearAdjointGradient()
return mygrad_hat
def commitAuxiliaryFields(self, state: borg.likelihood.MarkovState) -> None:
"""
Commits the final density field to the Markov state.
Args:
- state (borg.state.State): The state object containing the final density field.
"""
self.updateCosmology(self.fwd.getCosmoParams())
self.dens2like(self.delta)
state["BORG_final_density"][:] = self.delta
@borg.registerGravityBuilder
def build_gravity_model(state: borg.likelihood.MarkovState, box: borg.forward.BoxModel) -> borg.forward.BaseForwardModel:
"""
Builds the gravity model and returns the forward model chain.
Args:
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
- box (borg.forward.BoxModel): The input box model.
- ini_file (str, default=None): The location of the ini file. If None, use borg.getIniConfigurationFilename()
Returns:
borg.forward.BaseForwardModel: The forward model.
"""
global chain
myprint("Building gravity model")
which_model = 'cola'
ai = 0.05 # Initial scale factor
af = 1.0 # Final scale factor
supersampling = 2
forcesampling = 2
nsteps = 20 # Number of steps in the PM solver
chain = borg.forward.ChainForwardModel(box)
# Make sure that the initial conditions are real in position space
chain.addModel(borg.forward.models.HermiticEnforcer(box))
# CLASS transfer function
# chain @= borg.forward.model_lib.M_PRIMORDIAL_AS(box)
transfer_class = borg.forward.model_lib.M_TRANSFER_CLASS(box, opts=dict(a_transfer=1.0))
transfer_class.setModelParams({"extra_class_arguments":{'YHe':'0.24'}}) # helps deals with errors with primordial physics in CLASS for weird cosmologies
chain @= transfer_class
# Gravity model
if which_model == 'lpt':
mod = borg.forward.model_lib.M_LPT_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
do_rsd=False,
supersampling=supersampling,
lightcone=False,
part_factor=1.01,))
elif which_model == '2lpt':
mod = borg.forward.model_lib.M_2LPT_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
do_rsd=False,
supersampling=supersampling,
lightcone=False,
part_factor=1.01,))
elif which_model == 'pm':
mod = borg.forward.model_lib.M_PM_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
pm_start_z=1/ai - 1,
do_rsd=False,
supersampling=supersampling,
forcesampling=forcesampling,
lightcone=False,
part_factor=1.01,
pm_nsteps=nsteps, # Number of steps in the PM solver
tcola=False
))
elif which_model == 'cola':
mod = borg.forward.model_lib.M_PM_CIC(
box,
opts=dict(a_initial=af,
a_final=af,
pm_start_z=1/ai - 1,
do_rsd=False,
supersampling=supersampling,
forcesampling=forcesampling,
lightcone=False,
part_factor=1.01,
pm_nsteps=nsteps, # Number of steps in the PM solver
tcola=True
))
mod.accumulateAdjoint(True)
chain @= mod
# Cosmological parameters
cpar = borg.cosmo.CosmologicalParameters()
cpar.default()
chain.setCosmoParams(cpar)
return chain
@borg.registerSamplerBuilder
def build_sampler(state: borg.likelihood.MarkovState, info: borg.likelihood.LikelihoodInfo, loop: borg.samplers.MainLoop):
"""
Builds the sampler and returns the main loop.
Args:
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
- info (borg.likelihood.LikelihoodInfo): The likelihood info object to be used in the likelihood.
- loop (borg.samplers.MainLoop): The main loop object to be used in the likelihood.
Returns:
borg.samplers.MainLoop: The main loop.
"""
# Here you can add cosmology sampling, model parameter sampling, etc.
# For now, we'll just sample the initial conditions so don't need to do anything
return []
@borg.registerLikelihoodBuilder
def build_likelihood(state: borg.likelihood.MarkovState, info: borg.likelihood.LikelihoodInfo) -> borg.likelihood.BaseLikelihood:
"""
Builds the likelihood and returns the likelihood object.
Args:
- state (borg.likelihood.MarkovState): The Markov state object to be used in the likelihood.
- info (borg.likelihood.LikelihoodInfo): The likelihood info object to be used in the likelihood.
Returns:
borg.likelihood.BaseLikelihood: The likelihood object.
"""
myprint("Building likelihood")
global likelihood
likelihood = MyLikelihood(chain)
return likelihood

53
ini_file.ini Normal file
View file

@ -0,0 +1,53 @@
[system]
console_output = borg_log
VERBOSE_LEVEL = 2
N0 = 32
N1 = 32
N2 = 32
L0 = 500.0
L1 = 500.0
L2 = 500.0
corner0 = -250.0
corner1 = -250.0
corner2 = -250.0
NUM_MODES = 100
test_mode = true
seed_cpower = true
[block_loop]
hades_sampler_blocked = false
bias_sampler_blocked= true
ares_heat = 1.0
[mcmc]
number_to_generate = 20
random_ic = false
init_random_scaling = 0.1
[hades]
algorithm = HMC
max_epsilon = 0.01
max_timesteps = 50
mixing = 1
[python]
likelihood_path = /home/bartlett/borg_examples/example0.py
[run]
run_type = mock
NCAT = 0
[cosmology]
omega_r = 0
fnl = 0
omega_k = 0
omega_m = 0.315
omega_b = 0.049
omega_q = 0.685
h100 = 0.68
sigma8 = 0.81
n_s = 0.97
w = -1
wprime = 0
beta = 1.5
z0 = 0

1
outdir Symbolic link
View file

@ -0,0 +1 @@
/data101/bartlett/borg_examples/

27
run.sh Executable file
View file

@ -0,0 +1,27 @@
#!/bin/sh
# Modules
module purge
module restore myborg
module load cuda/12.6
# Environment
source /home/bartlett/.bashrc
source /home/bartlett/anaconda3/etc/profile.d/conda.sh
conda deactivate
conda activate borg_new
# Kill job if there are any errors
set -e
# Path variables
BORG=/data101/bartlett/build_borg/tools/hades_python/hades_python
RUN_DIR=/data101/bartlett/borg_examples/example0
mkdir -p $RUN_DIR
cd $RUN_DIR
INI_FILE=/home/bartlett/borg_examples/ini_file.ini
cp $INI_FILE ini_file.ini
$BORG INIT ini_file.ini