map2map/map2map/models/adversary.py
2024-04-03 09:44:01 +02:00

54 lines
1.6 KiB
Python

import torch
def adv_model_wrapper(module):
"""Wrap an adversary model to also take lists of Tensors as input,
to be concatenated along the batch dimension
"""
class _new_module(module):
def forward(self, x):
if not isinstance(x, torch.Tensor):
x = torch.cat(x, dim=0)
return super().forward(x)
return _new_module
def adv_criterion_wrapper(module):
"""Wrap an adversarial criterion to:
* also take lists of Tensors as target, used to split the input Tensor
along the batch dimension
* expand target shape as that of input
* return a list of losses, one for each pair of input and target Tensors
"""
class _new_module(module):
def forward(self, input, target):
assert isinstance(input, torch.Tensor)
if isinstance(target, torch.Tensor):
input = [input]
target = [target]
else:
input = self.split_input(input, target)
assert len(input) == len(target)
target = [t.expand_as(i) for i, t in zip(input, target)]
loss = [super(new_module, self).forward(i, t)
for i, t in zip(input, target)]
return loss
@staticmethod
def split_input(input, target):
assert all(t.dim() == target[0].dim() > 0 for t in target)
if all(t.shape[0] == 1 for t in target):
size = input.shape[0] // len(target)
else:
size = [t.shape[0] for t in target]
return torch.split(input, size, dim=0)
return _new_module