map2map/map2map/train.py
Yin Li 862c9e75a0 Swap generator & discriminator order in training
The reasoning is that updating generator first will free up the memory
taken by the graph of the model
2020-01-22 19:00:13 -05:00

388 lines
14 KiB
Python

import os
import shutil
import torch
import torch.nn.functional as F
import torch.distributed as dist
from torch.multiprocessing import spawn
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from .data import FieldDataset
from . import models
from .models import narrow_like
def node_worker(args):
torch.manual_seed(args.seed) # NOTE: why here not in gpu_worker?
#torch.backends.cudnn.deterministic = True # NOTE: test perf
args.gpus_per_node = torch.cuda.device_count()
args.nodes = int(os.environ['SLURM_JOB_NUM_NODES'])
args.world_size = args.gpus_per_node * args.nodes
node = int(os.environ['SLURM_NODEID'])
if node == 0:
print(args)
args.node = node
spawn(gpu_worker, args=(args,), nprocs=args.gpus_per_node)
def gpu_worker(local_rank, args):
args.device = torch.device('cuda', local_rank)
torch.cuda.device(args.device)
args.rank = args.gpus_per_node * args.node + local_rank
dist.init_process_group(
backend=args.dist_backend,
init_method='env://',
world_size=args.world_size,
rank=args.rank
)
train_dataset = FieldDataset(
in_patterns=args.train_in_patterns,
tgt_patterns=args.train_tgt_patterns,
**vars(args),
)
if not args.div_data:
#train_sampler = DistributedSampler(train_dataset, shuffle=True)
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(
train_dataset,
batch_size=args.batches,
shuffle=args.div_data,
sampler=None if args.div_data else train_sampler,
num_workers=args.loader_workers,
pin_memory=True
)
args.val = args.val_in_patterns is not None and \
args.val_tgt_patterns is not None
if args.val:
val_dataset = FieldDataset(
in_patterns=args.val_in_patterns,
tgt_patterns=args.val_tgt_patterns,
augment=False,
**{k: v for k, v in vars(args).items() if k != 'augment'},
)
if not args.div_data:
#val_sampler = DistributedSampler(val_dataset, shuffle=False)
val_sampler = DistributedSampler(val_dataset)
val_loader = DataLoader(
val_dataset,
batch_size=args.batches,
shuffle=False,
sampler=None if args.div_data else val_sampler,
num_workers=args.loader_workers,
pin_memory=True
)
in_chan, out_chan = train_dataset.in_chan, train_dataset.tgt_chan
model = getattr(models, args.model)
model = model(sum(in_chan), sum(out_chan))
model.to(args.device)
model = DistributedDataParallel(model, device_ids=[args.device],
process_group=dist.new_group())
criterion = getattr(torch.nn, args.criterion)
criterion = criterion()
criterion.to(args.device)
optimizer = getattr(torch.optim, args.optimizer)
optimizer = optimizer(
model.parameters(),
lr=args.lr,
#momentum=args.momentum,
betas=(0.5, 0.999),
weight_decay=args.weight_decay,
)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
factor=0.1, patience=10, verbose=True)
adv_model = adv_criterion = adv_optimizer = adv_scheduler = None
args.adv = args.adv_model is not None
if args.adv:
adv_model = getattr(models, args.adv_model)
adv_model = adv_model(sum(in_chan + out_chan)
if args.cgan else sum(out_chan), 1)
adv_model.to(args.device)
adv_model = DistributedDataParallel(adv_model, device_ids=[args.device],
process_group=dist.new_group())
adv_criterion = getattr(torch.nn, args.adv_criterion)
adv_criterion = adv_criterion()
adv_criterion.to(args.device)
if args.adv_lr is None:
args.adv_lr = args.lr
if args.adv_weight_decay is None:
args.adv_weight_decay = args.weight_decay
adv_optimizer = getattr(torch.optim, args.optimizer)
adv_optimizer = adv_optimizer(
adv_model.parameters(),
lr=args.adv_lr,
betas=(0.5, 0.999),
weight_decay=args.adv_weight_decay,
)
adv_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(adv_optimizer,
factor=0.1, patience=10, verbose=True)
if args.load_state:
state = torch.load(args.load_state, map_location=args.device)
args.start_epoch = state['epoch']
model.module.load_state_dict(state['model'])
optimizer.load_state_dict(state['optimizer'])
scheduler.load_state_dict(state['scheduler'])
if 'adv_model' in state and args.adv:
adv_model.module.load_state_dict(state['adv_model'])
adv_optimizer.load_state_dict(state['adv_optimizer'])
adv_scheduler.load_state_dict(state['adv_scheduler'])
torch.set_rng_state(state['rng'].cpu()) # move rng state back
if args.rank == 0:
min_loss = state['min_loss']
print('checkpoint at epoch {} loaded from {}'.format(
state['epoch'], args.load_state))
del state
else:
# def init_weights(m):
# classname = m.__class__.__name__
# if isinstance(m, (torch.nn.Conv3d, torch.nn.ConvTranspose3d)):
# m.weight.data.normal_(0.0, 0.02)
# elif isinstance(m, torch.nn.BatchNorm3d):
# m.weight.data.normal_(1.0, 0.02)
# m.bias.data.fill_(0)
# model.apply(init_weights)
#
args.start_epoch = 0
if args.rank == 0:
min_loss = None
torch.backends.cudnn.benchmark = True # NOTE: test perf
if args.rank == 0:
args.logger = SummaryWriter()
for epoch in range(args.start_epoch, args.epochs):
if not args.div_data:
train_sampler.set_epoch(epoch)
train_loss = train(epoch, train_loader,
model, criterion, optimizer, scheduler,
adv_model, adv_criterion, adv_optimizer, adv_scheduler,
args)
epoch_loss = train_loss
if args.val:
val_loss = validate(epoch, val_loader,
model, criterion, adv_model, adv_criterion,
args)
epoch_loss = val_loss
scheduler.step(epoch_loss[0])
if args.adv:
adv_scheduler.step(epoch_loss[0])
if args.rank == 0:
print(end='', flush=True)
args.logger.close()
is_best = min_loss is None or epoch_loss[0] < min_loss[0]
if is_best:
min_loss = epoch_loss
state = {
'epoch': epoch + 1,
'model': model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
'rng': torch.get_rng_state(),
'min_loss': min_loss,
}
if args.adv:
state.update({
'adv_model': adv_model.module.state_dict(),
'adv_optimizer': adv_optimizer.state_dict(),
'adv_scheduler': adv_scheduler.state_dict(),
})
ckpt_file = 'checkpoint.pth'
best_file = 'best_model_{}.pth'
torch.save(state, ckpt_file)
del state
if is_best:
shutil.copyfile(ckpt_file, best_file.format(epoch + 1))
#if os.path.isfile(best_file.format(epoch)):
# os.remove(best_file.format(epoch))
dist.destroy_process_group()
def train(epoch, loader, model, criterion, optimizer, scheduler,
adv_model, adv_criterion, adv_optimizer, adv_scheduler, args):
model.train()
if args.adv:
adv_model.train()
# loss, loss_adv, adv_loss, adv_loss_fake, adv_loss_real
# loss: generator (model) supervised loss
# loss_adv: generator (model) adversarial loss
# adv_loss: discriminator (adv_model) loss
epoch_loss = torch.zeros(5, dtype=torch.float64, device=args.device)
for i, (input, target) in enumerate(loader):
input = input.to(args.device, non_blocking=True)
target = target.to(args.device, non_blocking=True)
output = model(input)
target = narrow_like(target, output) # FIXME pad
loss = criterion(output, target)
epoch_loss[0] += loss.item()
# generator adversarial loss
if args.adv:
if args.cgan:
if hasattr(model, 'scale_factor') and model.scale_factor != 1:
input = F.interpolate(input,
scale_factor=model.scale_factor, mode='trilinear')
input = narrow_like(input, output)
output = torch.cat([input, output], dim=1)
target = torch.cat([input, target], dim=1)
eval_out = adv_model(output)
real = torch.ones(1, dtype=torch.float32,
device=args.device).expand_as(eval_out)
fake = torch.zeros(1, dtype=torch.float32,
device=args.device).expand_as(eval_out)
loss_adv = adv_criterion(eval_out, real) # FIXME try min
epoch_loss[1] += loss_adv.item()
if epoch >= args.adv_delay:
loss_fac = loss.item() / (loss_adv.item() + 1e-8)
loss += loss_fac * (loss_adv - loss_adv.item()) # FIXME does this work?
optimizer.zero_grad()
loss.backward()
optimizer.step()
# discriminator
if args.adv:
eval_out = adv_model(output.detach())
adv_loss_fake = adv_criterion(eval_out, fake) # FIXME try min
epoch_loss[3] += adv_loss_fake.item()
eval_tgt = adv_model(target)
adv_loss_real = adv_criterion(eval_tgt, real) # FIXME try min
epoch_loss[4] += adv_loss_real.item()
adv_loss = 0.5 * (adv_loss_fake + adv_loss_real)
epoch_loss[2] += adv_loss.item()
adv_optimizer.zero_grad()
adv_loss.backward()
adv_optimizer.step()
batch = epoch * len(loader) + i + 1
if batch % args.log_interval == 0:
dist.all_reduce(loss)
loss /= args.world_size
if args.rank == 0:
args.logger.add_scalar('loss/batch/train', loss.item(),
global_step=batch)
if args.adv:
args.logger.add_scalar('loss/batch/train/adv/G',
loss_adv.item(), global_step=batch)
args.logger.add_scalars('loss/batch/train/adv/D', {
'total': adv_loss.item(),
'fake': adv_loss_fake.item(),
'real': adv_loss_real.item(),
}, global_step=batch)
dist.all_reduce(epoch_loss)
epoch_loss /= len(loader) * args.world_size
if args.rank == 0:
args.logger.add_scalar('loss/epoch/train', epoch_loss[0],
global_step=epoch+1)
if args.adv:
args.logger.add_scalar('loss/epoch/train/adv/G', epoch_loss[1],
global_step=epoch+1)
args.logger.add_scalars('loss/epoch/train/adv/D', {
'total': epoch_loss[2],
'fake': epoch_loss[3],
'real': epoch_loss[4],
}, global_step=epoch+1)
return epoch_loss
def validate(epoch, loader, model, criterion, adv_model, adv_criterion, args):
model.eval()
if args.adv:
adv_model.eval()
epoch_loss = torch.zeros(5, dtype=torch.float64, device=args.device)
with torch.no_grad():
for input, target in loader:
input = input.to(args.device, non_blocking=True)
target = target.to(args.device, non_blocking=True)
output = model(input)
target = narrow_like(target, output) # FIXME pad
loss = criterion(output, target)
epoch_loss[0] += loss.item()
if args.adv:
if args.cgan:
if hasattr(model, 'scale_factor') and model.scale_factor != 1:
input = F.interpolate(input,
scale_factor=model.scale_factor, mode='trilinear')
input = narrow_like(input, output)
output = torch.cat([input, output], dim=1)
target = torch.cat([input, target], dim=1)
# discriminator
eval_out = adv_model(output)
fake = torch.zeros(1, dtype=torch.float32,
device=args.device).expand_as(eval_out) # FIXME criterion wrapper: both D&G; min reduction; expand_as
adv_loss_fake = adv_criterion(eval_out, fake) # FIXME try min
epoch_loss[3] += adv_loss_fake.item()
eval_tgt = adv_model(target)
real = torch.ones(1, dtype=torch.float32,
device=args.device).expand_as(eval_tgt)
adv_loss_real = adv_criterion(eval_tgt, real) # FIXME try min
epoch_loss[4] += adv_loss_real.item()
adv_loss = 0.5 * (adv_loss_fake + adv_loss_real)
epoch_loss[2] += adv_loss.item()
# generator adversarial loss
loss_adv = adv_criterion(eval_out, real) # FIXME try min
epoch_loss[1] += loss_adv.item()
dist.all_reduce(epoch_loss)
epoch_loss /= len(loader) * args.world_size
if args.rank == 0:
args.logger.add_scalar('loss/epoch/val', epoch_loss[0],
global_step=epoch+1)
if args.adv:
args.logger.add_scalar('loss/epoch/val/adv/G', epoch_loss[1],
global_step=epoch+1)
args.logger.add_scalars('loss/epoch/val/adv/D', {
'total': epoch_loss[2],
'fake': epoch_loss[3],
'real': epoch_loss[4],
}, global_step=epoch+1)
return epoch_loss