map2map/map2map/models/unet.py

44 lines
1.1 KiB
Python

import torch
import torch.nn as nn
from .conv import ConvBlock, narrow_like
class UNet(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv_0l = ConvBlock(in_channels, 64, seq='CAC')
self.down_0l = ConvBlock(64, 64, seq='BADBA')
self.conv_1l = ConvBlock(64, 64, seq='CBAC')
self.down_1l = ConvBlock(64, 64, seq='BADBA')
self.conv_2c = ConvBlock(64, 64, seq='CBAC')
self.up_1r = ConvBlock(64, 64, seq='BAUBA')
self.conv_1r = ConvBlock(128, 64, seq='CBAC')
self.up_0r = ConvBlock(64, 64, seq='BAUBA')
self.conv_0r = ConvBlock(128, out_channels, seq='CAC')
def forward(self, x):
y0 = self.conv_0l(x)
x = self.down_0l(y0)
y1 = self.conv_1l(x)
x = self.down_1l(y1)
x = self.conv_2c(x)
x = self.up_1r(x)
y1 = narrow_like(y1, x)
x = torch.cat([y1, x], dim=1)
del y1
x = self.conv_1r(x)
x = self.up_0r(x)
y0 = narrow_like(y0, x)
x = torch.cat([y0, x], dim=1)
del y0
x = self.conv_0r(x)
return x