#!/bin/bash #SBATCH --job-name=R2D2 #SBATCH --output=%x-%j.out #SBATCH --partition=gpu_partition #SBATCH --gres=gpu:4 #SBATCH --exclusive #SBATCH --nodes=2 #SBATCH --time=1-00:00:00 echo "This is a minimal example. See --help or args.py for more," \ "e.g. on augmentation, cropping, padding, and data division." echo "Training on 2 nodes with 8 GPUs." echo "input data: {train,val,test}/R{0,1}-*.npy" echo "target data: {train,val,test}/D{0,1}-*.npy" echo "normalization functions: {R,D}{0,1} in ./RnD.py," \ "see map2map/data/norms/*.py for examples" echo "model: Net in ./model.py, see map2map/models/*.py for examples" echo "Training with placeholder learning rate 1e-4 and batch size 1." hostname; pwd; date # set computing environment, e.g. with module or anaconda #module load python #source $HOME/anaconda3/bin/activate pytorch_env srun m2m.py train \ --train-in-patterns "train/R0-*.npy,train/R1-*.npy" \ --train-tgt-patterns "train/D0-*.npy,train/D1-*.npy" \ --val-in-patterns "val/R0-*.npy,val/R1-*.npy" \ --val-tgt-patterns "val/D0-*.npy,val/D1-*.npy" \ --in-norms RnD.R0,RnD.R1 --tgt-norms RnD.D0,RnD.D1 \ --model model.Net --callback-at . \ --lr 1e-4 --batch-size 1 \ --epochs 1024 --seed $RANDOM date