Add figures with tensorboard

This commit is contained in:
Yin Li 2020-02-03 22:18:08 -05:00
parent 7f6578c63e
commit db69e9f953
2 changed files with 68 additions and 0 deletions

57
map2map/data/figures.py Normal file
View File

@ -0,0 +1,57 @@
from math import log2, log10, ceil
import torch
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize, LogNorm, SymLogNorm
from matplotlib.cm import ScalarMappable
def fig3d(*fields, size=64, cmap=None, norm=None):
fields = [f.detach().cpu().numpy() if isinstance(f, torch.Tensor) else f
for f in fields]
assert all(isinstance(f, np.ndarray) for f in fields)
nc = fields[-1].shape[0]
nf = len(fields)
fig, axes = plt.subplots(nc, nf, squeeze=False, figsize=(5 * nf, 4.25 * nc))
if cmap is None:
if (fields[-1] >= 0).all():
cmap = 'viridis'
elif (fields[-1] <= 0).all():
raise NotImplementedError
else:
cmap = 'RdBu_r'
if norm is None:
def quantize(x):
return 2 ** round(log2(x), ndigits=1)
l2, l1, h1, h2 = np.percentile(fields[-1], [2.5, 16, 84, 97.5])
w1, w2 = (h1 - l1) / 2, (h2 - l2) / 2
if (fields[-1] >= 0).all():
if h1 > 0.1 * h2:
norm = Normalize(vmin=0, vmax=quantize(2 * h2))
else:
norm = LogNorm(vmin=quantize(0.5 * l2), vmax=quantize(2 * h2))
elif (fields[-1] <= 0).all():
raise NotImplementedError
else:
if w1 > 0.1 * w2:
vlim = quantize(2.5 * w1)
norm = Normalize(vmin=-vlim, vmax=vlim)
else:
vlim = quantize(w2)
norm = SymLogNorm(linthresh=0.1 * w1, vmin=-vlim, vmax=vlim)
for c in range(nc):
for f in range(nf):
axes[c, f].imshow(fields[f][c, 0, :size, :size], cmap=cmap, norm=norm)
plt.colorbar(ScalarMappable(norm=norm, cmap=cmap), ax=axes)
return fig

View File

@ -10,6 +10,7 @@ from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter from torch.utils.tensorboard import SummaryWriter
from .data import FieldDataset from .data import FieldDataset
from .data.figures import fig3d
from . import models from . import models
from .models import narrow_like from .models import narrow_like
from .models.adversary import adv_model_wrapper, adv_criterion_wrapper from .models.adversary import adv_model_wrapper, adv_criterion_wrapper
@ -322,6 +323,11 @@ def train(epoch, loader, model, criterion, optimizer, scheduler,
'real': epoch_loss[4], 'real': epoch_loss[4],
}, global_step=epoch+1) }, global_step=epoch+1)
skip_chan = sum(in_chan) if args.adv and args.cgan else 0
args.logger.add_figure('fig/epoch/train',
fig3d(output[-1, skip_chan:], target[-1, skip_chan:]),
global_step =epoch+1)
return epoch_loss return epoch_loss
@ -383,4 +389,9 @@ def validate(epoch, loader, model, criterion, adv_model, adv_criterion, args):
'real': epoch_loss[4], 'real': epoch_loss[4],
}, global_step=epoch+1) }, global_step=epoch+1)
skip_chan = sum(in_chan) if args.adv and args.cgan else 0
args.logger.add_figure('fig/epoch/val',
fig3d(output[-1, skip_chan:], target[-1, skip_chan:]),
global_step =epoch+1)
return epoch_loss return epoch_loss